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Quantum Computation through Entangling Single Photons in Multipath Interferometers
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Single-photon interferometry has been used to simulate quantum computations. Its use has been lim-
ited to studying few-bit applications due to rapid growth in physical size with numbers of bits. We
propose a hybrid approach that employs n photons, each having L degrees of freedom yielding Ln basis
states. The photons are entangled via a quantum nondemolition measurement. This approach introduces
the essential element of quantum computing, that is, entanglement into the interferometry. Using these
techniques, we demonstrate a controlled-NOT gate and a Grover’s search circuit. These ideas are also
applicable to the study of nonlocal correlations in many dimensions.

PACS numbers: 03.67.Lx, 03.65.Bz, 42.25.Hz, 42.50.Dv
One of the simplest systems for studying quantum com-
putation is based upon single photons and linear optics.
The unitary evolution of single photons in linear networks
has been used to simulate the evolution of typical quantum
computers [1–6]. It has been shown that linear optics can
realize any unitary transformation on single photons [2].
Each degree of freedom of the single photon is labeled as
an eigenvector in the Hilbert space. The degrees of free-
dom of the single photon correspond to the basis states of
a typical binary quantum computer. For example, in an
n-qubit binary quantum computer there are 2n � N basis
states. To model an n-bit quantum computer using single
photons requires 2n degrees of freedom. One can consider
the single photon to be a 1-qubit N basis state quantum
computer, which can simulate an n-qubit N basis state bi-
nary quantum computer.

The difficulty of 1-qubit devices, regardless of the num-
ber of basis states that the qubit may have, is that the appa-
ratus size and complexity scales with the number of basis
states [7]. For example, if one wishes to double the num-
ber of states using a 1-qubit device, then one must double
the number of degrees of freedom. For few-bit applica-
tions this is relatively simple. The difficulty arises when
there are more than a few qubits (3 to 5). For example,
with a binary n-qubit computer, simply adding another bit
will double the number of basis states in the system.

In this Letter, we propose a hybrid approach to quantum
computing. Single photons having L degrees of freedom
are entangled via quantum nondemolition measurements
(QND) [8–12]. Single-photon multipath interferometry
is employed for each photon. The photons will operate
in spatially separated single-photon subcircuits, which we
will refer to as Sb , where b labels the subcircuit in the to-
tal circuit. The various subcircuits “communicate” via ap-
propriately chosen QND measurements [8,9]. This Letter
assumes that it is possible to have a p cross-phase modu-
lation (during the QND measurement) at the single-photon
level [13–17]. Any implementation which allows such
cross-phase modulations can be used to realize these ideas
(Ref. [9] is a review of several current QND measurement
schemes). Such an entanglement allows n photons with
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L degrees of freedom to represent Ln basis states in the
calculation. This approach has several important features.
First, there is a large number of basis states for relatively
few qubits. Second, the fiber networks provide excel-
lent isolation from the environment and can be well stabi-
lized yielding small decoherence. Third, only a few QND
measurements are needed in order to perform nontrivial
calculations.

The photons must have carefully chosen properties.
First, the photons must be time synchronized so that they
interact according to design in the QND device. Second,
the frequency of the photons must be set according to the
device used. In some cases, depending upon the QND
device, the frequency of the photons will be different.
Also, in many cases, the polarization of the photons deter-
mines the strength of the QND interaction. Several single-
photon sources or photon “turnstiles” have been proposed
and studied [18–20] that would allow the separate sources
to be synchronized. Alternatively, one could consider
using weak coherent pulses having on average much
less than one photon per pulse such that there is a small
probability of having multiple photons in a single pulse
[21]. Then coincidence detection schemes may be used to
establish the synchronization. The expense is a reduced
repetition rate.

A convenient method for implementing multipath
single-photon interferometry employs linear integrated
optics [5]. We will make use of this approach to describe
the realization of the many path operations. For example,
a single symmetric M 3 M fiber coupler will perform
the discrete Fourier transform on M spatial modes of the
single photon [22]. One concern with using fiber optics
networks is the nonunitary operations associated with
loss in the networks. For example, in [22] the loss is
modeled using a diagonal matrix with each of the diagonal
elements having a value set by the loss in each path of
the interferometer. Approximately equal loss in each of
the arms of the interferometer will not perform a “which-
path” measurement in the interferometer [23]. Hence, the
interference visibility will remain high. In this situation,
all of the diagonal elements are roughly equal. The loss
© 2000 The American Physical Society
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can then be modeled as a unity matrix multiplied by some
constant. For the most part, integrated devices follow
this type of behavior. In this paper, we assume a lossless
system for simplicity. The primary advantage of using
fiber optics is that many-path devices exist and alignment
is constrained to a one-dimensional fiber.

The purpose of the QND measurements is to give a state-
specific phase modulation [14]. This single-state phase
shift is referred to as a quantum phase gate [13] and is one
of the basic quantum gates. The cross-phase modulation
entangles the photons [13]. Consider the interaction of
two optical field modes in a Kerr medium [8] having a
x �3� nonlinear susceptibility. The interaction Hamiltonian
in the Kerr medium is given by

Ĥ � 2h̄xn̂1gn̂2s , (1)

where the subscripts of the number operators denote which
subcircuit and which spatial mode the number operator is
operating on. For example, n1g denotes that it is opera-
ting on S1 in the g spatial mode. We assume no self-
phase modulation. Also, x is a function of frequency and
intensity and can be adjusted. The number operator is a
constant of the motion. By complementarity the phase of
the photons will be changed. The QND operation in the
Fock state basis is then given by

q̂ � eidn̂1g n̂2s , (2)

where d is the net phase shift [11]. Hence, the only state
that gets a d phase shift is the one in which photon 1, in
S1, is in the g spatial mode and photon 2, in S2, is in
the s spatial mode. This QND operation corresponds to a
quantum phase gate [13].

One of the fundamental gates is the controlled-NOT gate
[24]. To implement the controlled-NOT gate, we employ
the quantum phase gate. A phase shift of d � p is neces-
sary to construct the controlled-NOT gate. The schematic
for the controlled-NOT gate is shown in Fig. 1. In this fig-
ure, the control bit is photon 1 and the target bit is photon
2. There are two spatial modes or paths for each photon.
Photon 2 passes through a Mach-Zehnder interferometer
consisting of two symmetric single-mode 2 3 2 fiber cou-
plers. Without the QND measurement, photon 2 would,
after leaving the Mach-Zehnder interferometer, remain in
the same path. With the inclusion of the QND measure-
ment, assuming that photon 1 is in the 1 path, photon 2
exits in the other path. If photon 1 is in the 0 path then
photon 2 exits in the same initial path. This is the con-
trolled-NOT transformation.

The transformation can be observed by looking at the
evolution of the state vector. For example, let photon 1
be in the 1 spatial mode and photon 2 be in the 0 spatial
mode. Then, for this example, the initial state vector is
given by

jC0� � j1�11j0�10j0�21j1�20 , (3)

where j0� is the vacuum state and j1� is the single-photon
number state. The first 2 3 2 fiber coupler creates an
FIG. 1. Controlled-NOT gate using QND and linear integrated
optics.

equal amplitude superposition of spatial modes for photon
2. The state vector is then given by

jC1� �
1
p

2
j1�11j0�10�j0�21j1�20 1 j1�21j0�20� , (4)

the QND operator yields

jC2� �
1
p

2
j1�11j0�10�j0�21j1�20 1 eip j1�21j0�20� , (5)

and finally the second beam splitter yields

jC3� � j1�11j0�10j1�21j0�20 . (6)

Hence, photon 2 has switched spatial modes. A simpler
notation is commonly used in quantum computing [1]. The
basis states are written in terms of spatial modes and the
subcircuits correspond to positions in the register. For
example, the initial wave function for the controlled-NOT

gate example would have been written as j10�. The first
number in the ket represents the spatial mode of photon 1
and the second position represents the spatial mode of
photon 2. Also, for simplicity, the operators will be defined
in terms of matrices. For example, the 2 3 2 fiber coupler
in the j00� . . . j11� basis has the matrix form

B �
1
p

2

0
BBBB@

1 1 0 0
1 21 0 0
0 0 1 1
0 0 1 21

1
CCCCA (7)

and the QND phase shift has the matrix form

Q �

0
BBBB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 21

1
CCCCA . (8)

Then the matrix form of the total transformation has the
form

BQB �

0
BBBB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
CCCCA , (9)

which is the controlled-NOT transformation matrix.
The controlled-NOT gate example demonstrates that

quantum logic can be realized using QND. However, the
example does not display the advantages of using linear
199
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integrated optics in this hybrid approach. The primary
reason for using integrated optics and QND is that many
spatial modes for each photon are possible. For example,
consider commercially available 16-path devices (e.g.,
16 3 16 fiber couplers). For a 1-photon setup, this is the
equivalent number of states as a standard 4-qubit quantum
computer. Then, for n photons there would be 24n basis
states. In addition, it is not necessary to have the same
number of spatial modes for each photon.

We have demonstrated some of the basic quantum gates.
We can also implement any of the currently proposed quan-
tum algorithms using this hybrid approach. At present it
is difficult to realize a p cross-phase modulation. There-
fore, we examine algorithms which require few QND op-
erations. One example is a Grover’s search algorithm
[3,5,6,25,26]. The primary function of Grover’s search al-
gorithm is to take some initial state ji� and transform it
into some target state jt�. We desire the flexibility of start-
ing from any initial eigenvector in the Hilbert space and
evolving to any arbitrarily chosen eigenvector. With this
condition, it is necessary to choose a unitary search matrix
U which has equal magnitude for each of its elements. For
a unitary matrix having N basis states, the magnitude of
each matrix element is then equal to 1�

p
N .

In our example, we consider a 2-photon Grover’s search
algorithm with each photon having M spatial modes, as
shown in Fig. 2. This figure shows one iteration of an N �
M2 basis state search. The initial state is given by jM 2

1, M 2 1� and the target state is j0, 0�. Grover showed that
the operator Q � 2IiU21ItU could be used to search for
a desired state [26].

Consider the transformation effected by the M 3 M
fiber coupler in each subcircuit. The symmetric fiber cou-
pler performs the discrete Fourier transform (DFT) in the
subcircuits [5,6] and will be denoted Fa where the sub-
script a denotes which subcircuit. The matrix elements of
the DFT are given by

�Fa�jk �
1

p
M

ei2pjk�M , (10)

FIG. 2. Grover’s search employing single-photon interferom-
etry and a quantum nondemolition measuring device.
200
where j, k have values 0, 1 . . . M 2 1. The U operator is
obtained by taking the tensor product of the DFT in each
subcircuit U � F1

N
F2. The symmetric fiber couplers

satisfy the condition for having equal magnitudes for each
matrix element. The inverse transformation U21 is ob-
tained by taking the tensor product of the inverse DFT in
each subcircuit: U21 � F21

1
N

F21
2 . The inverse DFT

can also be generated by using a symmetric M 3 M fiber
coupler followed by a relabeling of the output paths, as
shown in Fig. 2. The relabeling of the paths goes as
M 2 1 $ 1, M 2 2 $ 2, . . ., M�2 $ M�2 (for a spe-
cific example, see Ref. [4]).

The It transformation is a diagonal matrix with all of
the diagonal elements equal to 1, except for the tt ele-
ment, which is equal to 21. The Ii transformation is simi-
lar except that the ii element is equal to 21. These two
transformations are realized by a QND cross-phase modu-
lation in the appropriate paths. They are represented by
two connected bubbles. For example, the I00 transforma-
tion is obtained by having a QND operation in the 0 path
of S1 and the 0 path of S2, and in matrix form is given
by

I00 �

0
BBBBBBBB@

21 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
0 0 0 0 1

1
CCCCCCCCA

. (11)

One iteration is shown in the dashed box labeled Q. In
order to complete the search, the appropriate number of
iterations needs to be performed. For the particular ex-
ample, i.e., for 2 photons, the number of iterations goes
as O�M�. There are several possible techniques for itera-
tion. For example, one could use the polarization of the
photons and a fast electro-optic switch as a means of ex-
tracting the photons after the desired number of iterations
are completed. The photons are then taken to be measured.
A final U transformation is needed and is followed by de-
tection [26].

Thus one of the standard quantum computation algo-
rithms may be implemented by this hybrid approach. Note
that Grover’s search algorithm can serve as a starting point
for other quantum circuits. For example, we have shown
in [6] that a slightly modified version of Grover’s search
can realize a quantum associative memory.

Also of key interest is the realization of a time-regulated
source of nonlocally correlated photons. If time-regulated
single-photon sources are used to generate the input pho-
tons, then time-regulated sources of spatially entangled
photons in many dimensions [27] will be generated. These
ideas can be generalized to many photons and still main-
tain the production rates. A source that could realize such
correlations would be of significant interest fundamentally
and would surpass any current technique for generating en-
tangled photons.
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The examples in this Letter have been limited to
2-photon setups. However, circuits having many photons
are possible. In order to entangle n photons, n 2 1
QND devices are required. The realization of such large
circuits would be of great fundamental and computational
interest.

A serious concern is the difficulty of obtaining p

cross-phase modulations during QND measurements.
Our ability to obtain large cross-phase modulations has
increased by many orders of magnitude in just a few years.
However, it is still very difficult to obtain appreciable
modulations for single photons. There are two approaches
that have significant promise for realizing such large
nonlinear phase shifts—cavity quantum electrodynamics
[13,15,16] and electromagnetically induced transparency
(EIT) [14,17,28]. For example, recently Lukin and
Imamoğlu [17] proposed p shifts at the single-photon
level using a novel EIT scheme. Two photons with
equal, slow-group velocities can interact in a transparent,
nonlinear mixture of isotopes of alkali atoms. The
results in their paper are based on exact overlap of the
photon wave packets. Since the free-space coherence
length of the single photons is many meters, it should be
relatively simple to achieve good overlap of the photon
wave packets. Lukin and Imamoğlu’s proposed results
suggest that p phase shifts may be attainable at the single-
photon level.

As stated earlier, another concern is loss [22]. In this
Letter we have considered the fiber networks to be loss-
less. However, as the number of paths increases, the
loss dramatically increases. This sets a practical limit
on the number of spatial modes that can be used per
photon.

These ideas are a natural extension of the use of single-
photon interferometry for simulating quantum logic. By
adding entanglement to the system, a true quantum com-
puting system has been proposed. Hence, it no longer just
“simulates” quantum logic, but actually performs quantum
computations. The addition of entanglement between pho-
tons via the QND measurements also addresses the prob-
lem of the rapid growth in complexity of these circuits
as the Hilbert space grows. This hybrid approach should
allow the realization of many-state optical quantum com-
puting networks.
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