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Quantum Dot as Spin Filter and Spin Memory
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We consider a quantum dot in the Coulomb blockade regime weakly coupled to current leads and
show that in the presence of a magnetic field it acts as an efficient spin filter (at the single-spin level),
producing a spin-polarized current. Conversely, if the leads are fully spin polarized the up or the down
state of the spin on the dot results in a large sequential or a small cotunneling current, and, thus, together
with ESR techniques, the setup can be operated as a single-spin memory.

PACS numbers: 73.50.–h, 73.23.Hk, 85.30.Vw, 85.30.Wx
An increasing number of spin-related experiments
[1–6] show that the spin of the electron offers unique
possibilities for finding novel mechanisms for information
processing—most notably in quantum-confined semi-
conductors with unusually long spin-dephasing times
approaching microseconds [2], and where spins can be
transported coherently over distances of up to 100 mm
[2]. Besides the intrinsic interest in spin-related phe-
nomena, spin-based devices hold promises for future
applications in conventional [1] as well as in quantum
computer hardware [7]. One of the challenging problems
for such applications is to obtain sufficient control over
the spin dynamics in nanostructures. In the following
we address this issue and propose a quantum-dot setup
which can be operated either as a spin filter (spin diode)
to produce spin-polarized currents or as a device to detect
(“readout”) and manipulate single-spin states (single-spin
memory) [8]. Both effects occur at the single-spin level
and thus represent the ultimate quantum limit of a spin
filter and spin memory. In both cases, we will work in
the Coulomb blockade regime [9] and consider sequential
and cotunneling processes. A new feature of our proposal
is that the spin degeneracy is lifted [10], with different
Zeeman splittings in the dot and in the leads, which then
results in Coulomb blockade peaks which are uniquely
associated with a definite spin state on the dot.

Formalism.—Our system consists of a quantum dot
(QD) connected to two Fermi-liquid leads which are in
equilibrium with reservoirs kept at the chemical potentials
ml , l � 1, 2, where outgoing currents can be measured;
see Fig. 1. By using a standard tunneling Hamiltonian ap-
proach [11], we write for the full Hamiltonian H0 1 HT ,
where H0 � HL 1 HD describes the leads and the dot,
with HD including the charging and interaction energies
of the dot electrons as well as the Zeeman energy gmBB
of their spins in the presence of an external magnetic
field B � �0, 0, B�, where g is the effective g factor. We
concentrate first on unpolarized lead currents and assume
that the Zeeman splitting in the leads is negligibly small
compared to the one in the QD. This can be achieved, e.g.,
by using InAs for the dot �g � 15� attached to GaAs two-
dimensional electron gas (2DEG) leads �g � 20.44�, or
by implanting a magnetic impurity (say, Mn) inside a
0031-9007�00�85(9)�1962(4)$15.00
GaAs dot (again attached to GaAs 2DEG leads) with a
strongly enhanced electron g factor due to exchange split-
ting with the magnetic impurity [12]. (Below we will also
consider the opposite situation with a fully spin-polarized
lead current and a much smaller Zeeman splitting on the
dot.) The tunneling between leads and the QD is described
by the perturbation HT �

P
l,k,p,s tlpc

y
lksdps 1 H.c.,

where dps and clks annihilate electrons with spin s in
the dot and in the lth lead, respectively. While the orbital
k dependence of the tunneling amplitude tlp can be safely
neglected, this is not the case in general for the QD orbital
states p. From now on, we concentrate on the Coulomb
blockade (CB) regime [9], where the charge in the QD,
N̂ �

P
p,s dy

psdps , is quantized, i.e., �N̂� � N . Next,
turning to the dynamics induced by HT , we introduce the
reduced density matrix for the dot, rD � TrLr, where
r is the full stationary density matrix, and TrL is the
trace over the leads. To describe the stationary limit, we
use a standard master equation approach [9] formulated
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FIG. 1. The energy diagram of a QD attached to two leads is
shown in the regime where the QD contains an odd number N
of electrons with a topmost single electron in the ground state
[" (filled circle), and E" � 0]. A cotunneling process is depicted
(arrows) where two possible virtual states, singlet ES and triplet
ET1

, are shown. The parameter ES 2 m1 can be tuned by the
gate voltage to get into the sequential tunneling regime, defined
by m1 $ ES $ m2, where N on the QD fluctuates between odd
and even. For N even, the ground state contains a topmost
singlet state with ES , m1, m2.
© 2000 The American Physical Society
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in terms of the dot eigenstates and eigenenergies,
HDjn� � Enjn�, where n � �n, N�. By denoting with
r�n� � �njrDjn� the stationary probability for the dot to
be in the state jn�, and with W�n0, n� the transition rates
between n and n0, the stationary master equation to be
solved reads

P
n�W �n0, n�r�n� 2 W�n, n0�r�n0�� � 0.

The rates W can be calculated in a standard “golden
rule” approach [13], where we go up to second order in
HT , i.e., W �

P
l Wl 1

P
l0,l Wl0l , where Wl ~ t2 is the

rate for a tunneling process of an electron from the lth
lead to the dot and back, while Wl0l ~ t4 describes the si-
multaneous tunneling of two electrons from the lead l to
the dot and from the dot to the lead l0. Thus, two regimes
of transport through the QD can be distinguished: sequen-
tial tunneling (ST) and cotunneling (CT) [9,14]. The ST
regime is at the degeneracy point, where N̂ fluctuates be-
tween N and N 0 � N 6 1, and first order transitions are
allowed by energy conservation with the explicit rates

Wl�n0, n� � 2pn�fl�Dn0n� jAs
lnn0 j2dN 0,N11

1 �1 2 fl�Dnn0�� jAs
ln0nj

2dN 0,N21	 , (1)

where n �
P

k d�´F 2 ´k� is the lead density of
states per spin at the Fermi energy ´F , fl�´� � �1 1

exp��´ 2 ml��kBT �	21 is the Fermi function at tempera-
ture T , Dn0n � En0 2 En is the level distance, and we have
introduced the matrix elements As

ln0n �
P

p tlp�n0jdpsjn�
[note that n and n0 in Eq. (1) fix the spin index s]. In
the ST regime the current through the QD can be written
as Is � 6e

P
n,n0 W2�n0, n�r�n�, where (6) stands for

N 0 � N 7 1. We emphasize that the rates W�n, n0�
and thus the current depend on the spin state of the dot
electrons via n, n0. The ST current takes a particularly
simple form if the voltage bias, Dm � m1 2 m2 . 0, and
the temperature are small compared to the level distance
on the dot (the case of interest here), Dm, kBT , jDmnj,
; m, n, and thus only the lowest energy levels participate
in the transport [9]. The solution of the master equation
gives, in this case, for the ST current

Is �
eg1g2

g1 1 g2
� f1�Dn0n� 2 f2�Dn0n��, N 0 � N 1 1 ,

(2)

where gl � 2pnjAs
lnn0 j2 is the tunneling rate through the

lth barrier. For N 0 � N 2 1, we again get Eq. (2) but
with n $ n0. In the CT regime the only allowed processes
are second order transitions with the initial and the final
electron number on the QD being equal, i.e., N � N 0, and
with the rate
Wl0l�n0, n� � 2pn2
Z

d´ fl�´� �1 2 fl0�´ 2 Dn0n��
X
s,s0

Ç X
n1

As0

l0n0n1
As�

lnn1

Dnn1 1 ´
1

X
n2

As0

l0n2nAs�
ln2n0

Dn0n2 2 ´

Ç2
, (3)
where N1 � N 1 1, and N2 � N 2 1, and thus the two
terms in Eq. (3) differ by the sequence of tunneling. Our
regime of interest here is elastic CT, where En0 � En,
which holds for jDmnj . Dm, kBT , ; m fi n. This means
that the system is always in the ground state with r�n� �
1, and thus the CT current is given by Ic � eW21�n, n� 2

eW12�n, n�. In particular, close to a ST resonance (but still
in the CT regime) Eq. (3) considerably simplifies—only
one term contributes—and, for Dm, kBT , jm 6 Dnni j,
we obtain

Ic �
e

2p

g1g2Dm

�m 6 Dnni �2 , (4)

where (1) stands for i � 1, (2) represents i � 2, and
m � �m1 1 m2��2. From Eqs. (2) and (4) it follows that
Is 
 gi , while Ic 
 g

2
i , and therefore Ic ø Is. Thus, in

the CB regime the current as a function of m (or gate
voltage) consists of resonant ST peaks, where N̂ on the QD
fluctuates between N and N 6 1. The peaks are separated
by plateaus, where N is fixed and the (residual) current is
due to CT.

We note that the tunneling rates gl depend on the tun-
neling path through the matrix elements As

lmn. In general,
this can lead to a spin dependence of the current, which,
however, is difficult to measure [15]. In contrast to this,
we now show that a much stronger spin dependence can
come from the resonance character of the currents Is and
Ic, when the position of a resonance (as a function of gate
voltage) depends on the spin orientation of the tunneling
electron. To proceed we first specify the energy spectrum
of the QD more precisely. In general, the determination of
the spectrum of a QD is a complicated many-electron prob-
lem [16]. However, it is known from experiment [17] that,
especially away from orbital degeneracy points (which can
be easily achieved by applying magnetic fields [17]), the
spectrum is formed mainly by single-particle levels, pos-
sibly slightly renormalized by exchange interaction [18].

For a QD with N odd there is one unpaired electron
in one of the two lowest energy states, j"� and j#�, with
energies E" and E#, which become Zeeman split due to
a magnetic field B, Dz � jE" 2 E#j � mBjgBj. Let us
assume that j"� is the ground state, and set E" � 0 for
convenience. For N even, the two topmost electrons (with
the same orbital wave function) form a spin singlet, �j"#� 2

j#"���
p

2, with energy ES . This is the ground state. The
other states, such as three triplets jT1� � j""�, jT2� � j##�,
and jT0� � �j"#� 1 j#"���

p
2 with energies ET6

and ET0 , are
excited states, because of higher (mostly) single-particle
orbital energy.

Sequential tunneling.—First we consider the ST peak,
which separates two plateaus with N and N 1 1 electrons
on the dot, where N is odd (odd-to-even transition). In
the regime ET1

2 ES , Dz . Dm, kBT , only ground-state
transitions are allowed by energy conservation. The tun-
neling of spin-up electrons is blocked by energy conser-
vation, i.e., Is�"� � 0, because it involves excited states
jT1� and j #�. The only possible process is the tunneling of
1963
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FIG. 2. The only allowed processes for charge transport
through the dot in the ST regime at the odd-to-even transition.
A spin-down electron tunnels from lead 1 to the dot, forming a
singlet, and tunnels out again into lead 2. Tunneling of spin-up
electrons into the dot is forbidden by energy conservation since
this process involves excited states. The resulting current, Is�#�,
is spin polarized.

spin-down electrons, as shown in Fig. 2, which leads to
a spin-polarized current, Is�#�, given by Eq. (2), where
Dn0n � ES . 0 (since E" � 0). Thus, we have

Is�#��I0 � u�m1 2 ES� 2 u�m2 2 ES� ,

kBT , Dm , (5)

Is�#��I0 �
Dm

4kBT
cosh22

∑
ES 2 m

2kBT

∏
, kBT . Dm ,

(6)

where I0 � eg1g2��g1 1 g2�. Hence, in the specified
regime the dot acts as a spin filter through which only
spin-down electrons can pass [19]. Second, we consider
the ST peak at the transition from even to odd, i.e., when
N is even. The current is then given by Eq. (2) with
Dn0n � 2ES . 0. The spin-down current is now blocked,
Is�#� � 0, while the spin-up electrons can pass through the
QD, with the current Is�"� given by (5) and (6), where ES

has to be replaced by 2ES . Because this case is very
similar to the previous one with # replaced by ", we will
concentrate on the odd-to-even transition only. Next, we
will demonstrate that, although CT processes can in gen-
eral lead to a leakage of unwanted current, this turns out to
be a minor effect, and spin filtering works also in the CT
regime.

Cotunneling.—Above or below a ST resonance, i.e.,
when ES . m1,2 or ES , m1,2, the system is in the CT
regime. Close to this peak the main contribution to the
transport is due to two processes (a) and (c); see Fig. 3,
where the energy deficit of the virtual states, jm 2 ESj, is
minimal. According to Eq. (4), we have

Ic�#� �
e

2p

g1g2Dm

�m 2 ES�2 . (7)

Thus, we expect the spin filtering of down electrons to
work even in the CT regime close to the resonance. How-
ever, there are additional CT processes, 3(b) and 3(d),
which involve tunneling of spin-up electrons and lead to
a leakage of up-spin. If N is odd (below the resonance),
the dot is initially in its ground state �"�, and an incoming
spin-up electron can form only a virtual triplet state jT1�
[process (b) in Fig. 3]. This process contributes to the rate
(2) with an energy deficit ET1

2 m, so that for the effi-
ciency of spin filtering [defined as I�#��I�"�] we obtain, in
this regime,
1964
a

c

d

b

initial finalvirtual

FIG. 3. (a) and (b) are the main processes in the cotunneling
regime with N odd when inelastic processes and processes where
the dot is not in the ground state are suppressed by the Zeeman
energy Dz . Only the leading virtual transitions are shown. (c)
and (d) visualize the leading cotunneling processes for N even.
Here, other processes are suppressed by the energy difference
between singlet and triplet, ET1

2 ES .

Ic�#��Ic�"� 

µ
1 1

ET1
2 ES

ES 2 m

∂2

, N odd. (8)

Above the resonance, i.e., when N is even and the
ground state is the spin singlet jS�, the tunneling of spin-up
electrons occurs via the virtual spin-down state [process
(d) in Fig. 3] with an energy deficit Dz 1 m 2 ES ,
which has to be compared to the energy deficit m 2 ES

of the main process [Fig. 3(c)]. Thus, we obtain, for the
efficiency of the spin filtering in the CT regime,

Ic�#��Ic�"� 

µ
1 1

Dz

m 2 ES

∂2

, N even. (9)

We see that in both cases, above and below the reso-
nance, the efficiency can be made large by tuning the gate
voltage to the resonance, i.e., jm 2 ESj ! 0. Eventually,
the system goes to the ST regime, jm 2 ESj & kBT , Dm.
Now, by using Eqs. (4)–(6) we can estimate the efficiency
of spin filtering in the ST regime,

Is�#��Ic�"� 

D2

z

�g1 1 g2� max�kBT , Dm	
, (10)

where we assumed that Dz , jET1
2 ESj, and, for

simplicity, g1 
 g2, which is typically the case in
quantum dots [9,17]. In the ST regime considered here
we have gi , kBT , Dm [9]. Therefore, if the require-
ment kBT , Dm , Dz is satisfied, filtering of spin-down
electrons in the ST regime is very efficient, i.e., Is�#��
Ic�"� ¿ 1. In the quantum regime, gi . kBT , Dm,
tunneling occurs as Breit-Wigner resonance [9], and
max�kBT , Dm	 in Eq. (10) has to be replaced by gi . Fi-
nally, we note that the spin polarization of the transmitted
current oscillates between up and down as we change the
number of dot electrons N one-by-one. The functionality
of the spin filter can be tested, e.g., with the use of a p-i-n
diode [3,4] which is placed in the outgoing lead 2. Via
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excitonic photoluminescence, the diode transforms the
spin polarized electrons (entering lead 2) into correspond-
ingly circularly polarized photons which can then be
detected.

Spin readout and memory.—We now consider the
opposite case where the current in the leads is fully spin
polarized. Recent experiments have demonstrated that
fully spin-polarized carriers can be tunnel injected from
a spin-polarized magnetic semiconductor (III-V or II-VI
materials) with a large effective g factor into an unpo-
larized GaAs system [3,4]. Another possibility would
be to work in the quantum Hall regime, where spin-po-
larized edge states are coupled to a quantum dot [21].
To be specific, we consider the case where ET1

2

ES 1 Dz . Dm, kBT with ET1
. ES [Dz . kBT is not

necessary as long as the spin relaxation time is longer
than the measurement time (see below)]. We assume
that the spin polarization of both leads is, say, up and
N is odd. There are now two cases for the current, I "

or I #, corresponding to a spin-up or spin-down on the
QD. First, we assume the QD to be in the ground state
with its topmost electron spin pointing up. According to
previous analysis [see paragraph before Eqs. (5) and (6)],
the ST current vanishes, i.e., I "s � 0, since the tunneling
into the level ET1

(and higher levels) is blocked by energy
conservation, while the tunneling into ES is blocked by
spin conservation (the leads can provide and take up
only electrons with spin-up). However, there is again a
small CT current, I "c, which is given by Eq. (7). We now
compare this to the second case, where the topmost dot
spin is down with additional Zeeman energy Dz . 0.
Here, the ST current I #s is finite, and given by Eqs. (5) and
(6) with ES replaced by ES 2 Dz . In the limit ES . Dz ,
we get I #s � Is�#�, and thus the ratio I #s�I "c is again given
by Eq. (10). Hence, we see that the dot with its spin-up
transmits a much smaller current than the dot with
spin-down. This fact allows the readout of the spin state
of the (topmost) dot electron by comparing the measured
currents. Furthermore, the spin state of the QD can be
changed (“read in”) by ESR techniques, i.e., by applying
a pulse of an ac magnetic field (perpendicular to B) with
resonance frequency v � Dz [22]. Thus the proposed
setup functions as a single-spin memory with readin and
readout capabilities, the relaxation time of the memory
given by the spin relaxation time tS on the QD (which can
be expected to exceed hundreds of nanoseconds [2]). We
note that this ts can be easily measured since it is the time
during which I #s is finite before it strongly reduces to I "c.
Finally, this scheme can be upscaled: In an array of such
QDs where each dot is separately attached to ingoing and
outgoing leads (for readout) we can switch the spin state
of each dot individually by locally controlling the Zeeman
splitting Dz . This can be done [7], e.g., by applying a
gate voltage on a particular dot that pushes the wave
function of the dot electrons into a region of, say, higher
effective g factor (the induced level shift in the QD can be
compensated for by the chemical potentials).
In conclusion, we have shown that quantum dots in the
Coulomb blockade regime and attached to leads can be
operated as efficient spin filters at the single-spin level.
Conversely, if the leads are spin polarized, the spin state
of the quantum dot can be read out by a traversing current
which is (nearly) blocked for one spin state while it is
unblocked for the opposite spin state.
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