VOLUME 85, NUMBER 9 PHYSICAL REVIEW LETTERS 28 Aucust 2000

Out-of-Equilibrium Kondo Effect in Double Quantum Dots
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The out-of-equilibrium transport properties of a double quantum dot system in the Kondo regime are
studied theoretically by means of a two-impurity Anderson Hamiltonian with interimpurity hopping. The
Hamiltonian is solved by means of a nonequilibrium generalization of the slave-boson mean-field theory.
It is demonstrated that measurements of the differential conductance dI/dV, for appropriate values of
voltages and tunneling couplings, can give a direct observation of the coherent superposition between the
many-body Kondo states of each dot. For large voltages and arbitrarily large interdot tunneling, there is
a critical voltage above which the physical behavior of the system again resembles that of two decoupled
quantum dots.

PACS numbers: 72.15.Qm, 73.20.Dx, 73.23.Hk

Recent experiments [1—-3] have shown that new physics  changes (¢ is the interdot tunneling coupling and I is the
emerge when the transport properties of quantum dots single particle broadening coming from the coupling to
(QD’s) at temperatures (T') below the Kondo temperature the leads [14]) can be explored by measuring the nonlin-
(Tk) are studied [4]. QD’s offer the intriguing possibil-  ear transport properties of the system. Our results can be
ity of a continuous tuning of the relevant parameters gov-  summarized in Figs. 1 and 2: the differential conductance
erning the Kondo effect [5] as well as the possibility of  dI/dV of the DQD directly measures the transition (as 7.
studying Kondo physics when the system is driven out  increases) from two isolated Kondo impurities to a co-
of equilibrium in different ways [6]. These experimen-  herent superposition of the many-body Kondo states of
tal breakthroughs have opened up a new way for the study  each dot, which form bonding and antibonding combi-
of strongly correlated electrons in artificial systems. The  nations. This coherent state which occurs for 7. > 1 is
Kondo anomaly appearing in the density of states (DOS)  reflected as a splitting of the zero-bias anomaly in the
of the QD reflects the formation of a quantum-coherent  dI/dV curves. This splitting depends nontrivially on the
many-body state. Motivated by the recent experimental ad-  voltage and on the many-body parameters of the problem.
vances in the study of double quantum dots (DQD) [7]itis  For large voltages, we find that there is a critical volt-
thus interesting to study what happens when two QD’s in ~ age above which the coherent configuration is unstable
the Kondo regime are coupled. Previous theoretical studies ~ and the physical behavior of the system again resembles

of this problem at equilibrium have focused on the com-  that of two decoupled QD’s, i.e., two Kondo singulari-

petition between Kondo effect and antiferromagnetic cou-  ties pinned at each chemical potential, even for 7. > 1.

pling generated via superexchange [8,9] or via capacitive  This instability is reflected as a drastic drop of the cur-

coupling between dots [10]. rent leading to singular regions of negative differential
In this Letter we focus on the study of a DQD in the  conductance (NDC).

Kondo regime driven out of equilibrium by means of a dc Model.—In typical experiments, Uingradot, A€ > T

voltage bias. There have hitherto been only a few attempts (Uintradot 18 the strong on-site Coulomb interaction on each
to study this problem [11] but a clear picture of the problem  dot, A€ is the average level separation), which allows one
is yet missing. Following the recent work of Aono et al.  to consider a single state in each QD [15]. We can model
[12] and Georges and Meir [8] we employ the slave-boson the DQD with a (N = 2) fold degenerate two-impurity
(SB) technique [13] in a mean-field approximation (MFA) Anderson Hamiltonian with an extra term accounting for
and generalize it to a nonequilibrium situation. This MFA  interdot tunneling. Each impurity is coupled to a different
allows us to include nonperturbatively the interdot tun-  Fermi sea of chemical potential w; and wg, respectively.
neling term (i.e., coherence between dots). The differ- In the limit Ujpgradot — ©° (on each QD) and Ujpterdor — 0
ent physical regimes that appear as the ratio 7. = t¢/T’ [16], the Hamiltonian may be written in terms of auxiliary
| SB operators [13] plus constraints:

t
H= 3 eChoctet 2  Caflofar + 0D (flabibifre + [hobrbLfLo)
o

kae(L r1-0 aE{L,R},0
1 t
w2 Valehobifer ¥ flobacha) ¥ 2 Aa(ZfJ,,,fw + bibe - 1>. (1)
+ kaE{L,R}-U' aE{L,R} g
Ck,.o(Ck,.0) are the creation (annihilation) operators for
electrons in the lead «. To simplify the notation we con- € (i.e., Tk is the same for both dots at equilibrium; the
sider henceforth that V;, = Vg = V; and €;, = €g, = generalization to different Tx’s is straightforward). The
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FIG. 1. [-V curves for different values of 7. = 1 and ¢y =

—3.5. Inset: dI/dV curves for the same parameters.

even-odd symmetry is broken by the interdot coupling
tc. In the SB representation, the annihilation operator
for electrons in the QD’s, ¢, is decomposed into the SB
operator bl which creates an empty state and a pseudo-
fermion operator f,, which annihilates the singly oc-
cupied state with spin o in the dot a: c4e — b; fao
(CM — f1_b,). In the last term of (1), the charge opera-
tor Qa >o f:[,,f(m + b;ﬂba has been introduced. This
term represents the constraint Q, = 1 in each dot with
Lagrange multiplier A,. This constraint prevents double
occupancy in the limit Ujpgadgot — °-

Solution.—In the lowest order, we assume that
the SB operator is a constant ¢ number b, (f)/+/N =
(ba(1))/\/N = b,, neglecting the fluctuations around
the average (b,(r)) of the SB. At T = 0, this MFA is
correct for describing spin fluctuations (Kondo regime).
Mixed-valence behavior (characterized by strong charge
fluctuations) cannot be described by the MFA. This
restricts our nonequilibrium calculation to low voltages
V <« €p. Charge fluctuations can be included as thermal
or quantum fluctuations (1/N correctlons) [13,17]. By
defining V, = Vob, and 7¢c = tch bk, we obtain from
the constraints and the equation of motion of the SB
operators the self-consistent set of four equations with
four unknowns (b, bg, AL, AR):

1
N §< fLT(R)afL(R)H =

3 1
bl + —,
L(R) N

VL R
Y el frwa) + 2)

kL(R),O'

fc T 72

N Z(fR(L)UfL(R)U> T ALwbrw) = 0.
ag

In order to solve (2) we need to calculate the non-
equilibrium distribution functions: G(f(,,ka,g(t —1t) =
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FIG. 2. (a) I-V curves for different values of 7. = 1 and €y =

—3.5. (b) dI/dV curves for the same parameters. (c) Blowup
(b). The arrow shows the splitting A = 26 for 7. = 1.5.

ik o () far ) and Gl arg(t = 1) = i flig (') X
fao(t)). They can be derived by applying the analytic
continuation rules of Ref. [18] to the equation of
motion of the time-ordered Green’s function along
a complex contour (Keldysh, Kadanoff-Baym, or
a more general choice). This allows us to relate
Gofo’,kaltr(t - t/) with th(r,a’rr(t - tl) and Gcrur,uz’(r(t -
)= —i0(t — ') fao(t), £Lo ()} and close the set
of equations (2) in Fourier space:

r de
L(R) - f GLL(R R)(E)

NP . [ de -
| EGEL(R,R)@) ( - &),
(3)
with &, = €9 + A, and r, = Eir. For tc =0, &,

and I', give, respectively, the position and width of the
Kondo peaks in the dot « (at equilibrium, and in the Kondo
regime, \/Ei + Fi = T,% = De~7l«l/Ty [5]. The dis-
tribution functions in the QD’s are GZL(R’R)(E) =
2i (e frm(e) [(e— ER(L))2+f12e(L)]+f‘R(L)fR(L)(E);(ZJ)
[(e—é&,+ily) (e—&r+ilr)—Fcl[(e—&, —iT,) (e—&r—ilr)—7¢]’
frLw)(€) is the Fermi-Dirac function in the left (right)
lead. Note that the presence of f% in the denominators
indicates that the interdot tunneling enters nonpertur-
batively in the calculations and, then, coherent effects
between dots are fully included. Because of the in-
terdot tunneling, the Kondo singularities of each dot
at &p and ér combine into coherent superpositions at

€+ = 2{(6L + &) = (L — &g)? + 4t2} Of course,
at equilibrium by = bg = b, A\, = Ag = A, we recover
the results of Refs. [8,12]. Note that the formation of
coherent superpositions of the Kondo singularity is not
trivially related with its single particle counterpart (for-

mation of bonding and antibonding states at €y * #¢).
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Let us focus for simplicity on the equilibrium case
(€, = &g); the splitting is given by § = €+ — e~ = 2i¢
which is a many-body parameter (given by the strong
renormalization of the interdot tunneling due to the
Kondo effect). & depends nonlinearly on the single
particle splitting 09 = 2¢¢ (see Inset of Fig. 3a). In the
Kondo limit, {[(¢ + 7¢)* + [2][(e — 7c)? + T2V/4 =
TR e™c/TT/T=1/2) "From the solution of Eq. (3) we obtain
the current = Z—;Re{zkb,, V1GLyr,o(t 1)} and DOS in
ko

cach QD: pr(r)(€) = — Im{[(e—:f(fi(a)Z(i)e,eff(f?)—fg]}'

Results.—We solve numerically (for T = 0) the set of
nonlinear equations (3) for different voltages u;, = V /2
and up = —V/2, €g = —3.5,D = 60 (Kondo regime
with T,% = 1073), and different values for the rest of the
parameters (all energies in units of I'). Depending on the
ratio 7. = t¢/I", we find two different physical scenarios
for . <1land 7. = 1.

In Fig. 1 we plot the I-V curves (for clarity, we show
only the V =0 region) for 7. = 1. The two main
features of these curves are: (i) an increase of the linear
conductance G = dI/dV|y—y as 7. increases and (ii) a
saturation, followed by a drop, of the current for large volt-
ages. This drop sharpens as 7. — 1. These features are
more pronounced in a plot of the dI/dV (inset of Fig. 1).
As 7. increases, the zero-bias anomaly (originating from
the Kondo resonance in the DOS of the dots) becomes
broader and broader until it saturates into a flat region
of value 2¢2/h (unitary limit) for 7. = 1. The reduction
of the current at larger V is reflected as NDC regions
in the dI/dV curves. For 7. = 1 this NDC becomes
singular. For 7. > 1, and contrary to the previous case,
G decreases for increasing values of 7. (Fig. 2a). This
reduction of G can be attributed to the formation of the
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FIG. 3. (a) €~ vs V for different values of 7. (g9 = —3.5).
Inset: Many-body splitting (8) as a function of the single
particle splitting (o) for V = 0 and € = —2.0, —2.5, —3.0,
—3.5 (from top to bottom). (b) I', vs V. (c) I'x vs V. (d) ¢
vs V.
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coherent superposition of the Kondo states. This can be
clearly seen as a splitting A = 28 in the dI/dV curves
(Fig. 2¢): By increasing 7., the zero-bias conductance
decreases, whereas two maxima at = Ve, show up (the
arrow shows the splitting A = 2V, for the maximum
value of 7. in the figure). Figure 2c demonstrates that the
dI/dV curves of a DQD in the Kondo regime directly
measure the coherent combination between the two many-
body states in the QD’s. For larger voltages, the sharp
drop of the current (Fig. 2a) reflects as strong NDC
singularities as in the dI/dV curves (Fig. 2b).

The position of these singularities moves towards higher
|V| as 7. increases. In order to explain the results of Figs. 1
and 2, we plot in Fig. 3a €+ as a function of V = 0 for
different values of 7.. For 7. = 0 (thick solid line), this
corresponds to a plot of &€, and & (i.e., the positions of
the Kondo resonances for the decoupled QD’s) as a func-
tion of V. We find, as expected, that each Kondo reso-
nance is pinned at the chemical potential of its own lead,
€L = up = V/2 and ég = ur = _V/Z. As the inter-
dot coupling is turned on, the voltage dependence becomes
strongly nonlinear. For low V, the curves for 7. # 0 do
not coincide with the curves for 7. = 0 (i.e., ur/g). This
situation, however, changes as we increase V; the level po-
sitions €+ converge towards the chemical potentials w; /g
in a nontrivial way.

The voltage V for which e* — €~ coincides with the
chemical potential difference V' gives the position of the
peak in the positive side of the dI/dV (Fig. 2c). This
voltage is the solution of the equation &(Vpeax) =
where 8(V) = /(e — &)* + 4?%, with &, /g given by
Eq. (3). Note the implicit (and nontrivial) voltage depen-
dence of 8(V). T';, T'x, and 7c follow a similar behavior
as a function of V (Figs. 3b—3d). For V. = V ,¢.k, we find
numerically that 6(V) = V a relationship that becomes
asymptotically exact as V — oo, The equation §(V) = V

has stable solutions 7c # 0 for [ &5 < 1, while, for
[@]2 > 1, the only stable solution is 7c = 0, cor-
responding to current / = 0. We denote the crossover
voltage where [@]2 = 1 by V*. For finite voltages
V' > Vpeak, on the other hand, the relation 6(V) = V is
only approximate, so that, at the crossover =V*, the quan-
tity Zc and hence I drop to a much smaller, but still finite,
value instead. Nevertheless, the crossover at V = V* still
indicates the beginning of the NDC region.

To illustrate this, we plot in Fig. 4 the left and right QD’s
DOS for 7. = 1. At equilibrium (V = 0), the Kondo sin-
gularity at € = 0 splits into the e+~ combinations. For
v/ T2 = 2 the coherence is still preserved but the physical
picture utterly changes for higher voltages (V/ TP = 4and
v/ T10< = 6). In this case, the previous configuration is no
longer stable, the coherence between dots is lost (7c — 0),
the dots are almost decoupled, and the Kondo resonances
in each dot are pinned again at their own chemical poten-
tial: the weight of the left (right) DOS at € = ug() is
almost zero (even though 7. = 1).

peak>
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FIG. 4. DOS for the left and right dot for 7. = 1 and different
voltages (€9 = —3.5). Inset: transmission probability of the
DQD for the same parameters.

This instability resembles that of the SB at 7 # 0 in
the single-impurity Anderson Hamiltonian [17,19]. In the
MFA the SB behaves as the order parameter associated
with the conservation of Q. When b # 0 the gauge sym-
metry b — be'?, f — fe'? associated with charge con-
servation is broken, and the MFA has two phases b # 0
and b = 0 separated by a second order phase transition.
It is important to point out that the fluctuations do not de-
stroy completely this > — 0 behavior (the SB fluctuations
develop power law behavior, replacing the transition by
a smooth crossover). We speculate that in our problem
this zero-temperature transition at finite V may also be ro-
bust against fluctuations, but 1/N corrections are needed
to substantiate this argument. Work in this direction is in
progress.

In conclusion, we have demonstrated that the nonlin-
ear transport properties (dI/dV) of a DQD in the Kondo
regime directly measure the transition (as 7¢ increases)
from two isolated Kondo impurities to a coherent bonding
and antibonding superposition of the many-body Kondo
states of each dot. While for ¢ < I' the conductance
maximum is at V = 0, for tc > T the transport is opti-
mized for a finite V matching the splitting between these
two bonding and antibonding states. For large voltages
(and t¢ = TI') there is a critical voltage above which the
coherent superposition is unstable and the physical be-
havior of the system again resembles that of two decou-
pled QD’s. This leads to a strong reduction of the current
and singular regions of negative differential conductance.
Concerning the observability of these effects, in our MFA
the maximum value of 6 ranges from 6 = 2OT2—500T2
(inset of Fig. 3a) giving, for the experiment of Ref. [1]

(I' ~ 150 weV), 8 ~ 3-75 ueV (30-750 mK) which is
within the resolution limits of present day techniques.
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