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Pauli Exchange Errors in Quantum Computation

Mary Beth Ruskai
Department of Mathematics, University of Massachusetts Lowell, Lowell, Massachusetts 01854

(Received 30 June 1999)

In many physically realistic models of quantum computation, Pauli exchange interactions cause a
subset of 2-qubit errors to occur as a first-order effect of couplings within the computer, even in the
absence of interactions with the computer’s environment. We give an explicit 9-qubit code that corrects
both Pauli exchange errors and all 1-qubit errors.

PACS numbers: 03.67.Lx
Most schemes for fault tolerant quantum computation
treat single-qubit errors as the primary error event, and
correct multiple-qubit errors as a higher-order side effect.
Discussions of quantum error correction also often ignore
the Pauli exclusion principle and permutational symmetry
of the states of multiqubit systems. This can often be justi-
fied approximately by considering the full wave function,
including spatial as well as spin components. However, an
analysis of these more complete wave functions suggests
that exchange errors, in which interactions between iden-
tical particles cause an error in two qubits simultaneously,
may be an important error mechanism in some circum-
stances. Moreover, because they result from interactions
within the quantum computer, exchange errors cannot be
reduced by better isolating the quantum computer from its
environment. After describing the physical mechanism of
exchange errors, we discuss codes designed specifically to
correct them.

A (pure) state of a quantum mechanical particle with
spin q corresponds to a one-dimensional subspace of the
Hilbert space H � C2q11 ≠ L2�R3� and is typically rep-
resented by a vector in that subspace. The state of a sys-
tem of N such particles is then represented by a vector
C�x1, x2, . . . , xN � in H N . However, when dealing with
identical particles, C must also satisfy the Pauli principle,
i.e., it must be symmetric or antisymmetric under exchange
of the coordinates xj $ xk , depending on whether the par-
ticles in question are bosons (e.g., photons) or fermions
(e.g., electrons). In either case, we can write the full wave
function in the form

C�x1,x2, . . . , xN �

�
X
k

xk�s1, s2, . . . , sN �Fk�r1, r2, . . . , rN � , (1)

where the “space functions” Fk are elements of L2�R3N �,
the “spin functions” xk are in �C2q11�N and xk � �rk , sk�
with rk a vector in R3 and the so-called “spin co-
ordinates” sk in 0, 1, . . . , 2q. [In the parlance of quantum
computing a spin state x is a (possibly entangled) N-qubit
state.] It is not necessary that x and F each satisfy the
Pauli principle; indeed, when q �

1
2 so that 2q 1 1 � 2

and we are dealing with C2, it is not possible for x to be
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antisymmetric when N $ 3. Instead, we expect that x

and F satisfy certain duality conditions which guarantee
that C has the correct permutational symmetry.

With this background, we now restrict attention to the
important special case in which q � 1

2 yielding two spin
states labeled so that s � 0 corresponds to j0� and s � 1
corresponds to j1�, and the particles are electrons so that
C must be antisymmetric. We present our brief for the im-
portance of Pauli exchange errors by analyzing the 2-qubit
case in detail, under the additional simplifying assumption
that the Hamiltonian is spin-free. Analogous considera-
tions apply in other cases.

For multiparticle states, it is sometimes convenient to
replace j0� and j1� by " and #, respectively. The notation
j01� describes a 2-qubit state in which the particle in the
first qubit has spin “up” �"� and that in the second has spin
“down” �#�. What does it mean for a particle to “be” in a
qubit? A reasonable answer is that each qubit is identified
by the spatial component of its wave function fA�r�, where
A,B,C, . . . label the qubits and wave functions for different
qubits are orthogonal. Thus,

j01� � 1
p

2
�fA�r1�" fB�r2�# 2 fB�r1�# fA�r2�"� . (2)

Notice that the electron whose spatial function is fA al-
ways has spin up regardless of whether its coordinates are
labeled by 1 or 2. We can rewrite (2) as

j01� �
1
p

2
�x1�s1, s2�f2�r1, r2�
1 x2�s1, s2�f1�r1, r2�� , (3)

where x6 �
1
p

2
�"# 6 #"� denotes the indicated Bell states

and f6 �
1
p

2
�fA�r1�fB�r2� 6 fB�r1�fA�r2��.

The assumption of a spin-free Hamiltonian H, im-
plies that the time development of (2) is determined
by e2iHtf6, and the assumption that the particles are
electrons implies that H includes a term corresponding to
the 1

r12
� 1

jr12r2j
electron-electron interaction. The Hamil-

tonian must be symmetric so that the states f6 retain
their permutational symmetry; however, the interaction
term implies that they will not retain the simple form of
symmetrized (or antisymmetrized) product states. Hence,
after some time the states f6 evolve into
© 2000 The American Physical Society
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F2 �
X
m,n

cmn
1
p

2
�fm�r1�fn�r2� 2 fn�r1�fm�r2�� , (4a)

F1 �
X
m#n

dmn
1
p

2
�fm�r1�fn�r2� 1 fn�r1�fm�r2�� . (4b)
where fm denotes any orthonormal basis whose first two
elements are fA and fB, respectively. There is no reason
to expect that cmn � dmn in general. On the contrary, only
the symmetric sum includes pairs with m � n. Hence
if one dmm fi 0, then one must have some cmn fi dmn.
Inserting (4) into (3) yields
e2iHtj01� �
cAB 1 dAB

2
�fA�r1�" fB�r2�# 2 fB�r1�# fA�r2�"�

1
cAB 2 dAB

2
�fB�r1�" fA�r2�# 2 fA�r1�# fB�r2�"� 1 CRemain

�
cAB 1 dAB

2
j01� 1

cAB 2 dAB
2

j10� 1 CRemain, (5)
where CRemain is orthogonal to f6.
A measurement of qubit A corresponds to projecting

onto fA. Hence a measurement of qubit A on the state
(3) yields spin up with probability 1

4 jcAB 1 dABj2 and
spin down with probability 1

4 jcAB 2 dABj2, and zero with
probability kCRemaink2. Note that the full wave function
is necessarily an entangled state and that the measurement
process leaves the system in state j10� or j01� with proba-
bilities 1

4 jcAB 6 dABj2, respectively, i.e., subsequent mea-
surement of qubit B always gives the opposite spin. With
probability 1

4 jcAB 2 dABj2 the initial state j10� has been
converted to j01�.

Although the probability of this may be small, it is not
zero. Precise estimates require a more detailed model
of the actual experimental implementation. However, it
would seem that any implementation which provides a
mechanism for 2-qubit gates would necessarily permit
some type of interaction between particles in different
qubits. Because one expects qubits to be less isolated
from each other than from the external environment, Pauli
exchange errors seem to merit more attention.

If the implementation involves charged particles,
whether electrons or nuclei, then the interaction includes
a contribution from the 1

r12
Coulomb potential which is

known to have long-range effects. This suggests that
implementations involving neutral particles, such as the
Briegel et al. proposal [1] using optical lattices, may be
advantageous for minimizing exchange errors.

A Pauli exchange error is a special type of “2-qubit”
error which has the same effect as “bit flips” if (and only
if ) they are different. The exchange of bits j and k is
equivalent to acting on a state with the operator

Ejk �
1
2 �Ij ≠ Ik 1 Zj ≠ Zk 1 Xj ≠ Xk 1 Yj ≠ Yk� ,

where Xj , Yj , and Zj denote the action of the Pauli matrices
sx , sy , and sz , respectively, on the bit j.

As an example, we consider Pauli exchange errors in the
simple 9-bit Shor code [2]:
jc0� � j000� 1 j011� 1 j101� 1 j110� , (6a)

jc1� � j111� 1 j100� 1 j010� 1 j001� , (6b)

where boldface denotes a triplet of 0’s or 1’s. It is clear
that these code words are invariant under exchange of
electrons within the 3-qubit triples (1, 2, 3), (4, 5, 6), or
(7, 8, 9). To see what happens when electrons in differ-
ent triplets are exchanged, consider the exchange E34 act-
ing on jc0�. This yields j000 000 000� 1 j001 011 111� 1

j110 100 111� 1 j111 111 000� so that

E34jc0� � jc0� 1 Z8jc0� 1 j001 011 111�
1 j110 100 111� ,

E34jc1� � jc1� 2 Z8jc1� 1 j110 100 000�
1 j001 011 000� .

If jc� � ajc0� 1 bjc1� is a superposition of code words,

E34jc� �
1
2 �jc� 1 Z8jc̃�� 1

1
p

2
jg� ,

where jc̃� � ajc0� 2 bjc1� differs from c by a “phase er-
ror” on the code words and jg� is orthogonal to the space
of code words and single-bit errors. Thus, this code can-
not reliably distinguish between an exchange error E34 and
a phase error on any of the last three bits. This problem
occurs because, if E34jc0� � ajc0� 1 bjd0� with jd0� or-
thogonal to jc0�, then jd0� need not be orthogonal to jc1�.

In order to be able to correct a given class of errors, we
first identify a set of basic errors ep in terms of which
all other errors can be written as linear combinations.
In the case of unitary transformations on single-bit, or
1-qubit errors, this set usually consists of Xk ,Yk ,Zk �k �
1, . . . , n�, where n is the number of qubits in the code
and Xk ,Yk ,Zk now denote I ≠ I ≠ I · · · ≠ sp ≠ · · · ≠ I ,
where sp denotes one of the three Pauli matrices acting
on qubit k. If we let e0 � I denote the identity, then a
sufficient condition for error correction is

�epCi j eqCj� � dijdpq . (7)

However, (7) can be replaced [3–5] by the weaker
195



VOLUME 85, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 3 JULY 2000
�epCi j eqCj� � dijdpq . (8)

where the matrix D with elements dpq is independent of
i, j. When considering Pauli exchange errors, it is natural
to seek codes which are invariant under some subset of
permutations. This is clearly incompatible with (7) since
some of the exchange errors will then satisfy EjkjCi� �
jCi�. Hence we will need to use (8).

The most common code words have the property that
jC1� can be obtained from jC0� by exchanging all 0’s and
1’s. For such codes, it is not hard to see that �C1 j ZkC1� �
2�C0 j ZkC0� which is consistent with 8 if and only if it
is identically zero. Hence even when using (8) rather than
(7) it is necessary to require

�C1 j ZkC1� � 2�C0 j ZkC0� � 0 (9)

when the code words are related in this way.
We now present a 9-bit code which can handle both Pauli

exchange errors and all 1-bit errors. It is based on the real-
ization that codes which are invariant under permutations
are impervious to Pauli exchange errors. Let

jC0� � j000 000 000� 1
1

p
28

X
P

j111 111 000� , (10a)

jC1� � j111 111 111� 1
1

p
28

X
P

j000 000 111� , (10b)

where
P

P denotes the sum over all permutations of the
indicated sequence of 0’s and 1’s, and it is understood that
permutations which result in identical vectors are counted
only once. This differs from the 9-bit Shor code in that
all permutations of j111 111 000� are included, rather
than only three. The normalization of the code words is
�Ci j Ci� � 1 1

1
28 � 9

3 � � 4.
The coefficient 1�

p
28 is needed to satisfy (9). Simple

combinatorics implies

�Ci j ZkCi� � �21�i
∑
1 2

1
3

µ
9
3

∂
1
28

∏
� 0 .

Moreover,

�ZkCi j Z�Ci� � 1 1 dk�

µ
9
3

∂
1
28

� 1 1 3dk� . (11)

The second term in (11) is zero when k fi � because of
the fortuitous fact that there are exactly the same number
of positive and negative terms. If, instead, we had used
all permutations of k 1’s in n qubits, this term would be
�n22k�22n
n�n21� � nk � when k fi �.
Since all components of jC0� have 0 or 6 bits equal to

1, any single-bit flip acting on jC0� will yield a vector
whose components have 1, 5, or 7 bits equal to 1 and is
thus orthogonal to jC0�, to jC1�, to a bit flip acting on
jC1�, and to a phase error on either jC0� or jC1�. Similarly,
a single-bit flip on jC1� will yield a vector orthogonal to
jC0�, to jC1�, to a bit flip acting on jC0�, and to a phase
error on jC0� or jC1�. However, single-bit flips on a given
code word are not mutually orthogonal.

To find �XkCi j X�Ci� when k fi �, consider
196
�Xk�n1n2 · · · n9� j X��m1m2 · · · m9�� . (12)

where ni , mi are in 0, 1. This will be nonzero only when
nk � m� � 0 and n� � mk � 1, or nk � m� � 1 and
n� � mk � 0, and the other n 2 2 bits are equal. FromP

P with k of n bits equal to 1, there are 2� n22
k21 � such

terms. Thus, for the code (10), there are 42 such terms
which yield an inner product of 42

28 �
3
2 when k fi �. If we

consider instead, �YkCi j X�Ci� � 2i�XkZkCi j X�Ci�
for k fi �, it is not hard to see that exactly half of the terms
analogous to (12) will occur with a positive sign and half
with a negative sign, yielding a net inner product of zero.
We also find �YkCi jXkCi� � 2i�XkZkCi j XkCi� �
2i�ZkCi j Ci� � 0 so that �YkCi j X�Ci� � 0 for all k, �.
In addition �YkCi j Z�Ci� � 2i�XkZkCi j Z�Ci� � 0 for
the same reason that �XkCi j Ci� � 0.

These results imply that (8) holds and that the matrix D
is block diagonal with the form

D �

0
BBB@
D0 0 0 0
0 DX 0 0
0 0 DY 0
0 0 0 DZ

1
CCCA , (13)

where D0 is the 37 3 37 matrix corresponding to the
identity and the 36 exchange errors, and DX ,DY ,DZ are
9 3 9 matrices corresponding respectively to the
Xk ,Yk ,Zk single-bit errors. One easily finds that d0

pq � 4
for all p, q. The 9 3 9 matrices DX ,DY ,DZ all have
dkk � 4 while, for k fi �, dk� � 3�2 in DX and DY

but dk� � 1 in DZ . Orthogonalization of this matrix is
straightforward. Since D has rank 28 � 3 3 9 1 1, we
are using only a 54 , 26 dimensional subspace of our 29

dimension space.
The simplicity of codes which are invariant under per-

mutations makes them attractive. However, there are few
such codes. All code words necessarily have the form

nX
k�0

ak

X
P

j 1 · · · 1| {z }
k

0 · · · 0| {z }
n2k

� . (14)

Condition (8) places some severe restrictions on the coeffi-
cient ak . For example, in (10) only a0 and a6 are nonzero
in jC0� and only a3 and a9 in jC1�. If we try to change
this so that a0 and a3 are nonzero in jC0� and a6 and a9 in
jC1�, then it is not possible to satisfy (9).

The 5-bit code in [4–5] does not have the permutation-
ally invariant form (14) because the code words include
components of the form

P
P 6j11 000�, i.e., not all terms

in the sum have the same sign. The nonadditive 5-bit code
in [7] requires sign changes in the

P
P 6j10 000� term.

Since such sign changes seem needed to satisfy (9), it ap-
pears that 5-bit codes cannot handle Pauli exchange errors
(although we have no proof).

However, permutational invariance, which is based on
a one-dimensional representation of the symmetric group,
is not the only approach to exchange errors. Our analysis
of (6) suggests a construction which we first describe in
an oversimplified form. Let jc0�, jd0�, jc1�, and jd1� be
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four mutually orthogonal n-bit vectors such that jc0�, jc1�
form a code for 1 -bit errors and jc0�, jd0� and jc1�, jd1�
are each bases of a two-dimensional representation of the
symmetric group Sn. If jd0� and jd1� are also orthogonal to
1-bit errors on the code words, then this code can correct
Pauli exchange errors as well as 1 -bit errors. If, in addi-
tion, the vectors jd0�, jd1� also form a code isomorphic to
jc0�, jc1� in the sense that the matrix D in (8) is identical
for both codes, then the code should also be able to correct
products of 1-bit and Pauli exchange errors.

But the smallest (excluding one-dimensional) irre-
ducible representations of the symmetric group for use
with n-bit codes have dimension n 2 1. Thus we will
seek a set of 2�n 2 1� mutually orthogonal vectors de-
noted jCm

0 �, jCm
1 � �m � 1, . . . , n 2 1� such that jC1

0�, jC1
1�

form a code for 1-bit errors and jCm
0 � �m � 1, . . . , n 2 1�

and jCm
1 � �m � 1, . . . , n 2 1� each form the basis of the

same irreducible representation of Sn. Such a code will
be able to correct all errors which permute qubits, not just
single exchanges. If, in addition, (8) is extended to

�epCm
i j eqC

m0

j � � dijdmm0dpq (15)

with the matrix D � 	Dpq
 independent of both i and m,
then this code will also be able to correct products of 1-bit
errors and permutation errors.

If the basic error set has size N (i.e., p � 0, 1, . . . ,N 2

1), then a two-word code requires codes which lie in a
space of dimension at least 2N . For the familiar case of
single-bit errors N � 3n 1 1 and, since an n-bit code
word lies in a space of dimension 2n, any code must satisfy
3n 1 1 , 2n21 or n $ 5. There are n�n 2 1��2 pos-
sible single-exchange errors compared to 9n�n 2 1��2
2-bit errors of all types. Similar dimension arguments
yield 2N � n2 1 5n 1 2 # 2n or n $ 7 for correcting
both single-bit and single-exchange errors and 2N �
9n�n 2 1� 1 2�3n 1 1� # 2n or n $ 10 for correcting
all 1- and 2-bit errors. The shortest code known [4] which
can do the latter has n � 11. Correcting Pauli exchange
errors can be done with shorter codes than required to
correct all 2-bit errors.

However, this simple dimensional analysis need not
yield the best bounds when exchange errors are involved.
Consider the simple code jC0� � j000�, jC1� � j111�
which is optimal for single-bit flips (but cannot correct
phase errors). In this case N � n 1 1, and n � 3
yields equality in 2�n 1 1� # 2n. But, since this code
is invariant under permutations, the basic error set can
be expanded to include all six exchange errors Ejk for a
total of N � 10 without increasing the length of the code
words.

In the construction proposed above, correction of
exchange and 1-bit errors would require a space of
dimension 2�n 2 1� �3n 1 1� # 2n or n $ 9. If codes
satisfying (15) exist, they could correct all permutation
errors as well as products of permutations and 1-bit
errors. Exploiting permutational symmetry may have a
big payoff.

Although codes which can correct Pauli exchange
errors will be larger than the minimal 5-qubit codes
proposed for single-bit error correction, this may not be
a serious drawback. For implementations of quantum
computers which have a grid structure (e.g., solid state
or optical lattices) it may be natural and advantageous to
use 9-qubit codes which can be implemented in 3 3 3
blocks [see, e.g., Ref. [1]]. However, codes larger than
9-bits may be impractical for a variety of reasons. Hence
it is encouraging that both the code (10) and the proposed
construction above do not require n . 9.

Several more complex coding schemes have been pro-
posed [3,8–12] for multiple error correction. It may be
worth investigating whether or not the codes proposed here
can be used advantageously in some of these schemes, such
as those [8] based on hierarchical nesting. Since the code
(10) can already handle multiple exchange errors (and the
proposed construction of some additional multiple errors),
concatenation of one of our proposed 9-bit codes with it-
self will contain some redundancy and concatenation with
a 5-bit code may be worth exploring.

Whether or not any 7-bit codes exist which can handle
Pauli exchange errors is another open question, which we
leave as a challenge for coding theorists.
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