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Transverse Instability of Optical Spatiotemporal Solitons in Quadratic Media
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We present experimental and numerical observations of transverse instability in quadratic media un-
der conditions that emphasize the inherently spatiotemporal and multidimensional nature of the wave
propagation. Intensity-dependent beam filamentation is shown to be closely connected to the periodic
evolution of quadratic solitons, and implications for the generation of three-dimensional spatiotemporal
solitons are discussed.

PACS numbers: 42.65.Tg, 05.45.Yv, 42.65.Sf
Optical solitons are localized electromagnetic waves
that propagate in nonlinear media with dispersion and/or
diffraction. Extensive theoretical and experimental under-
standing of both spatial and temporal optical solitons has
been accumulated [1]. Much less is known experimentally
about spatiotemporal solitons (STS), which result from the
simultaneous balance of diffraction and dispersion by self-
focusing and nonlinear phase modulation, respectively.
To date, STS have been generated only in quadratic
media [2,3]; pulses overcome diffraction in one transverse
spatial dimension as well as group-velocity dispersion
(GVD) to reach stable or periodically stable beam size
and pulse duration, and diffraction occurs in the remaining
transverse spatial dimension. One of the major goals in
the field of soliton physics is the production of pulses of
light that are localized in all dimensions, which we will
refer to as three-dimensional (3D) STS [4]. In addition to
the scientific interest in the generation of 3D STS, such
pulses could be the basis of ultrafast optical digital logic
in the future [5].

The stability of solitons is a crucial issue, and more gen-
erally the instabilities of waves propagating in nonlinear
systems have been the subject of much study, since they
can lead to dramatic physical effects. One particular type
of instability is that which occurs when a soliton propa-
gates in a medium of higher dimensionality than its own.
Such an instability is referred to as a transverse instability
(TI) or a modulation instability (MI) [6], and may lead to a
beam breaking into a number of fragments. The fragments
may in turn form solitons in subsequent evolution. These
processes have been studied theoretically for cubic [7–10]
and quadratic [11–16] nonlinear media.

Instabilities of this type are observed in the evolution of
optical beams in several classes of materials. For example,
bright soliton stripes in a bulk photorefractive medium
were found to break up into a sequence of two-dimensional
(2D) self-trapped beams [17]. In addition, pairs of vor-
tex solitons can be generated by the TI of dark soliton
stripes [18]. The decay of ring-shaped beams into higher-
dimensional solitons has been observed in Rb vapor [19],
in a quadratic nonlinear crystal [20], and in photorefractive
media [21]. Perhaps most pertinent to the work described
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in this Letter is the experimental observation of filamen-
tation of stationary spatial solitons in quadratic nonlinear
media [22].

It is difficult to create an experimental environment that
supports 3D STS, so it is intriguing that instabilities of
lower-dimensional solitons offer a potential route to for-
mation of 3D STS. In numerical studies, Akhmediev and
co-workers found that a stationary 2D solitary stripe propa-
gating in a medium with anomalous GVD and a saturable
nonlinearity breaks up into 3D STS [9]. A similar inves-
tigation of quadratic media concludes that 2D spatial soli-
tons decay into a train of quasistable 3D solitons owing to
MI [23]. Baboiu and Stegeman [16] analyzed the effects
of spatial modulation imposed on a one-dimensional (1D)
spatial soliton (a beam in the form of a stripe) in a quadratic
medium. The initial state of the process we address here is
already a temporal soliton, or a pulse evolving to a tempo-
ral soliton. Thus, a similar instability of 2D spatiotemporal
solitons could be expected to produce a structure localized
in the remaining transverse dimension, i.e., a 3D STS.

Here we describe observations of the TI of STS. 2D
STS in the form of a spatial stripe are generated under
conditions (namely, space-time anisotropy) that highlight
the essential spatiotemporal nature of the STS. Calcula-
tions agree with the experimental results and demonstrate
that the TI is directly influenced by the periodic evolution
of quadratic STS.

The diffraction, dispersion, and nonlinear lengths char-
acterizing pulse propagation in a quadratic medium are
LDFx� y� � kv

2
0x� y��2, LDS � 0.322t

2
0�jb�2�j, and LNL

(the length over which the accumulated nonlinear phase
shift is 1), respectively, where l is the fundamental-
harmonic (FH) wavelength, v0x� y� is the x� y�-dimension
beam waist, and b�2� is the GVD. The characteristic length
over which the FH and second-harmonic (SH) pulses move
away from each other in time is LGVM � ct0��n1g 2 n2g�
where n1g and n2g are the group indices at the FH and SH
frequencies, respectively, and t0 is the full width at half
maximum pulse duration.

In the absence of group-velocity mismatch (GVM), time
is formally equivalent to the transverse space dimensions,
and one might expect the instability of 2D STS to be
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fundamentally the same as the instability of 2D spatial
solitons. However, we will describe experiments per-
formed in the presence of large GVM: LDS�LGVM � 3.
In linear propagation the FH and SH pulses would move
away from each other by 3 times the pulse duration in one
characteristic length. In addition, the ratio of the FH to SH
dispersion lengths does not equal the ratio of the diffraction
lengths �LDS1�LDS2 fi LDF1�LDF2�. Therefore, the prob-
lem is highly anisotropic in the transverse dimensions, and
the spatiotemporal nature is essential.

To generate STS, we match LDS and LNL to LDF . A
diffraction grating introduces large and anomalous GVD
[24] and in turn allows convenient characteristic lengths of
�5 mm. Pulses of duration 120 fs and energy up to 1 mJ
at a wavelength of 800 nm are produced by a Ti:sapphire
regenerative amplifier. The beam is compressed in one
transverse direction to �60 mm, producing a spatial stripe
with aspect ratio 30:1. Experiments were performed with
17- and 25-mm long barium metaborate (BBO) crystals cut
for type-I phase-matching. These lengths allow for propa-
gation over 3.5 and 5.5 characteristic lengths at the FH fre-
quency, and propagation through the two adjoined crystals
corresponds to 9 characteristic lengths. BBO conveniently
provides an environment with large GVM, and has negli-
gible two-photon absorption at the wavelengths of interest.
These properties led us to choose BBO over LiIO3, which
was used in previous experiments on STS [2]. Details of
the experimental setup are described in Ref. [3].

Stable 2D STS (Fig. 1) are generated for I0 �
9 GW�cm2 and Dk � 224p cm21 [3]. These are
referred to as “walking” solitons because their velocity
depends on their FH/SH energy distribution [25–27].
With fixed phase mismatch, increasing the intensity to
I0 � 11 GW�cm2 causes the STS to break up along the
unconfined transverse dimension. At z � 3.5LDF the
beam breaks into a set of elliptically shaped filaments
with minor axis �65 mm and average aspect ratio �4:3.
After propagation to z � 5.5LDF the filaments become
nearly circular (Fig. 1) with diameter �65 mm (close
to the confined dimension of the 2D STS). A similar

FIG. 1. Beam waist (left) and temporal profile (right) at z �
5.5LDF (25 mm) for (i) 2D STS formation at I0 � 9 GW�cm2

and (ii) typical filamentation near I0 � 11 GW�cm2. For both
Dk � 224p cm21.
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filamentation of the 2D STS is observed when the phase
mismatch is reduced in magnitude with fixed I0, an al-
ternate way to increase the nonlinear phase shift. Lower-
contrast photographs indicate that a weak (�25% of the
total power) uniform background of dispersive FH and
SH light accompanies the filamentation of the beam.

We also monitored the pulse temporal profile as the in-
tensity was varied. The intensity autocorrelations of the
STS and a single filament are shown in Fig. 1. The pulse
duration decreases slightly with I0 and reaches a minimum
for values �10% above the threshold for filamentation.
Higher intensities then increase the apparent pulse dura-
tion. This will be discussed below.

To confirm that TI can cause the observed breakup of
STS, we solved the coupled wave equations in the pres-
ence of noise. The parameters chosen for the numerical
simulations are similar to those of the experiments, except
that the aspect ratio of the beam is limited to �10:1 by our
computing capability. When Gaussian intensity fluctua-
tions of random spatial frequency and magnitude are im-
posed on the input beam, clear filamentation is observed.
Figure 2 shows the beam profile at different incident in-
tensities, as in Fig. 1. Figure 3 shows the spatiotemporal
profiles of the FH and SH waves in the x-t plane at y � 0
and z � 3.5LDF , right after filamentation occurs. The mu-
tually trapped FH and SH waves comprising each filament

FIG. 2. Numerical simulation of pulse evolution in the pres-
ence of noise (along x). Time integrated spatial profiles of the
input beam (top) and the beam profiles at z � 2.7LDF
(12 mm), with I0 � 9.6 GW�cm2 (middle) and I0 �
12.0 GW�cm2 (bottom). In all cases, Dk � 224p cm21. The
STS formed with I0 below the threshold for filamentation are
similar to the input beam but with slight focusing in x and
no noise.
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FIG. 3. Numerical simulation of generated FH (upper) and
SH (lower) filaments after 2.7LDF (12 mm) propagation with
I0 � 12 GW�cm2 and Dk � 224p cm21. Notice the mutual
trapping of the FH and SH filaments in the time domain and the
walking soliton behavior of the filaments.

propagate together in time and space, forming a 3D STS.
Because they evolve from fluctuations, each filament has
different FH/SH energy content and thus different velocity
(Fig. 3). At higher I0 the filamentation occurs earlier, so
there is more time for the filament pulses to propagate with
distinct velocities. Under experimental conditions corre-
sponding to the simulations of Fig. 3, the apparent pulse
duration measured with the entire beam is about twice that
of the STS, in good agreement with the variation of tem-
poral positions of the filament pulses.

One of the signatures of TI is the dependence of the
spatial filament frequency on incident intensity (Fig. 4).
Remarkably, the frequency increases superlinearly with I0.
The superlinear behavior can be understood as a direct con-
sequence of the periodic evolution of STS. As a simplified
model of the quadratic medium in the limit of large phase
mismatch, consider the spatial nonlinear Schrödinger equa-
tion. The maximum TI gain occurs at frequency Vmax �
�1�2p� �0.14lLDF�21�2 � �DFNL�1�2, where the latter re-
lation follows from LDF � LNL. In Kerr media, Vmax �
I1�2, while in quadratic media under conditions of satura-
tion, Vmax � I1�4 [22]. Filamentation due to TI is most
likely to occur at positions of highest intensity, and the
maximum intensity of STS varies rapidly with the input
intensity [3]. As an example, with I0 only 40% larger
than the threshold for STS formation, I � 9I0 is reached
twice per soliton period [3]. Evaluation of the expression
for Vmax above using the peak intensities obtained from
numerical simulations produces the semianalytic estimate
in Fig. 4. The superlinear dependence is reproduced, al-
though the quantitative agreement with experiment should
not be taken seriously. 3D numerical solutions predict an
even stronger dependence on input intensity. We attribute
most of the discrepancy between simulation and experi-
ment to the neglect of a small nonlinear loss at the SH fre-
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FIG. 4. Dependence of filament spatial frequency on incident
intensity. The circles represent experimental data and the solid
line shows 3D simulation results. The short-dashed line indi-
cates I1�4 growth from the low intensity data point and the long
dashed line represents semianalytic calculation of the spatial fre-
quency from peak intensity data based on 2D simulation results.
Experimental spatial frequencies were obtained by Fourier trans-
formation of cuts through data, as in Fig. 1.

quency in the simulations. Furthermore, the simulations
do suggest that some self-focusing in the unconfined di-
rection (Fig. 2) contributes to the increased intensity, and,
in turn, spatial frequency. The increased dimensionality
enhances the intensity dependence as a result of increased
intensity oscillation during soliton propagation, in contrast
to MI observed previously with continuous waves (lead-
ing to temporal solitons) [28] and with 1D spatial solitons
(leading to 2D spatial solitons) [22].

For I0 � 16 GW�cm2 (about 1.5 times the intensity at
which the beam first breaks up), the filaments begin to
distort and exhibit spatial frequency chirp, the manifesta-
tions of strong self-focusing and incipient collapse arising
from x �3�. We believe that filamentation of a periodic
STS occurs at powers high enough for Kerr self-focusing
to become significant; this is observed in numerical
simulations. At large-enough phase mismatch and/or
high-enough intensity, collapse of the 2D STS occurs
before filamentation.

It is interesting to consider the nature of the experi-
mental filaments themselves. The use of angular disper-
sion to create GVD in the present experiment eventually
precludes the formation of 3D STS. This angular disper-
sion will broaden the beam in the unfocused direction by
�100 mm�cm, which becomes appreciable for the fila-
ments. The filaments reach minimum spatial and temporal
dimensions at z � 5.5LDF , at which point they are desta-
bilized by the spatial broadening from angular dispersion.
After traversing an additional 3.5 characteristic lengths, the
beam (pulse) broadens to �125 mm ��280 fs�. The angu-
lar dispersion broadens the filaments after formation, but
does not affect the breakup dynamics and observed spatial
filament frequencies.
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In conclusion, we have observed a TI of 2D STS in
quadratic media. The TI is intimately connected to the
periodic nature of quadratic STS. An exciting implica-
tion of this work is that this process should provide one
means of producing 3D STS. As emphasized originally by
Kanashov and Rubenchik [12], only the 3D STS is truly
stable; all lower-dimensional solitons are susceptible to TI.
Thus, the TI of the 2D bound state offers a route to the
“self-assembly” of 3D STS if the required GVD is pro-
duced without angular dispersion.
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