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Diffraction Management
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By using the diffraction properties of waveguide arrays, we propose a scheme to produce structures
with designed diffraction. We fabricated arrays with reduced, canceled, and even reversed diffraction.
Results of experiments with such waveguides are presented and compared with the predictions made by
coupled-mode theory.

PACS numbers: 42.25.Fx, 42.79.Gn, 42.82.Et
Optical diffraction and dispersion originate from physi-
cally different sources, but share many common properties.
Both effects lead to the broadening of an initial intensity
profile, either in space by diffraction or in time by dis-
persion. Both phenomena arise due to different rates of
phase accumulation for different (spatial, or temporal) fre-
quencies. Dispersion is material dependent: it is zero in
vacuum and in certain materials at specific wavelengths.
On the other hand, diffraction is a geometrical effect and
depends only weakly on the medium the light propagates
in, via its refractive index.

Dispersion can be controlled by changing materials and/
or geometry of a waveguide. For example, optical glass
fibers can be engineered to cancel dispersion and even
change its sign [1]. By alternate use of fibers of posi-
tive and negative dispersion, transmission lines of managed
dispersion have been demonstrated [2–4]. Because disper-
sion is a linear phenomenon, the accumulative dispersion
of cascaded different fibers is equivalent to propagation in
a fiber with an averaged dispersion.

Unlike dispersion, diffraction exists even in vacuum due
to its geometrical origin. In the far field, a Gaussian
beam with a waist w0 broadens with an angle of uff �
l0�pw0n, where l0 is the wavelength in vacuum and n
is the linear refractive index [5]. To date, there is no way
to control the expansion rate of a given beam other than
by changing the refractive index of the material. Cancel-
ing diffraction, or changing its sign are impossible via this
method. It is the purpose of this paper to suggest and
demonstrate a way of designing an arbitrary diffraction re-
lation in a planar waveguide, which can even produce zero
and reversed values.

Consider the propagation of scalar plane waves of the
form E�r� � E0 exp�i �k ? �r� in a two-dimensional free
space, where �k is the wave vector whose x and z compo-
nents are kx and kz , respectively [6]. The absolute value
of �k is k �

2pn
l0

and it points along the normal to the
plane wave phase fronts. In analogy with the dispersion
relation, we can define the diffraction relation of the time
independent optical wave equation [7] (see Fig. 1):
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kz�kx� �
p

k2 2 k2
x , (1)

which can also be derived from basic geometrical consid-
erations. For kx ø k, it is common to make the paraxial
approximation, and the diffraction relation (equivalent to
the Helmholz equation) becomes

kz � k 2
k2

x

2k
. (2)

When an optical field propagates over a distance z, each
transverse component kx gains a phase f�kx, z� � kz�kx�z.
A group of transverse components centered at kx is shifted
by an amount Dx �

≠f

≠kx
�

≠kz

≠kx
z, i.e., the propagation di-

rection is simply a � tan21� ≠kz

≠kx
�. The field broadens be-

cause of the divergence between different displacements
D � 1

z
≠2f

≠k2
x

� ≠2kz

≠k2
x

, which we term diffraction in analogy
to the definition of dispersion. This difference in transverse
shifts between spatial frequency components of a limited

−3π/2 −π −π/2 0 π/2 π 3π/2
0.9998

0.9999

1.0000

1.0001

1.0002

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b)

k z/k

k
x
d

(a)

 k
x
/k

k z/k

FIG. 1. Diffraction curves: phase vs spatial frequency for vari-
ous models. The arrows mark the largest possible angle of
energy propagation for each model. (a) Diffraction in a homo-
geneous medium, nonparaxial (solid line) and paraxial (dashed
line). (b) discrete diffraction. Clearly, paraxiality fails beyond
�0.5k. Only discrete diffraction exhibits inversion of curvature
around 6p�2.
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size optical field is the reason for the broadening of light
beams, the diffraction patterns of apertures, and similar
phenomena. The Poynting vector of each kx component in
real space is directed perpendicular to the diffraction curve,
which is circular in the nonparaxial case [8].

The diffraction in free space is Dnp � 2k2

�k22k2
x �3�2 , which

is simplified in the paraxial limit to Dp � 2
1
k . Note that

Dp does not depend on kx and is always negative. This
expression for paraxial diffraction resembles the approxi-
mation of temporal dispersion using a second order ex-
pansion. One immediate consequence is the possibility of
generating solitons under nonlinear propagation [9]. The
sign of diffraction is always negative, hence only bright
spatial solitons form in materials with a focusing Kerr
nonlinearity. On the other hand, dark and bright temporal
solitons can exist in normal and anomalous dispersive ma-
terials, respectively.

Consider now the case of optical field propagation in a
linearly coupled, infinite array of one dimensional wave-
guides. The diffraction relation of such an array can be de-
rived from the optical equivalent of the continuous model
of tight binding of electrons in a one dimensional atomic
lattice [10]. The optical coupled mode set of equations for
the electrical field in the nth waveguide and the consequent
diffraction relation are [11,12]

dEn

dz
� ikwgEn 1 iC�En21 1 En11� ,

kz � kwg 1 2C cos�kxd� .
(3)

In Eqs. (3), kwg is the propagation constant of the wave-
guide, d is the distance between the centers of two adja-
cent waveguides, and C is the coupling constant between
them, which is proportional to an overlap integral of the
two modes of such waveguides. Accordingly, the discrete
diffraction is Dd � 22Cd2 cos�kxd�. Paraxiality is im-
plicitly assumed in the derivation of Eqs. (3), and it is valid
as long as C ø k. Nevertheless, paraxiality is not nec-
essary for the ideas presented here. A Brillouin zone is
formed in the range jkxdj , p and any higher frequency
has an equivalent inside it (see Fig. 1b). Note that because
of the periodicity and the continuity of the diffraction re-
lation, there exists a maximal angle of propagation for the
light energy, amax � 2Cd. The eigenmodes of this diffrac-
tion relation [Eqs. (3)] are known as Floquet-Bloch waves,
first introduced in the dynamical theory of x-ray diffrac-
tion [13]. Floquet-Bloch waves were used in optics in the
past for describing the propagation of light in corrugated
planar waveguides both in time [14] and space [8,15], and
also in a two dimensional optical lattice [16]. Notice that
the Floquet-Bloch treatment is not derived by assuming
the tight binding model, but rather by a weak periodic po-
tential [10]. Nevertheless, as in solid state physics, both
approaches lead to the same qualitative results [14,17].
Optical waveguide arrays have more similarities to elec-
trons in an atomic lattice, such as the appearance of Bloch
oscillations which was demonstrated recently [18,19].
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The most important feature of Eqs. (3) in the current
context is the inversion of the sign of the diffraction Dd

in the outer parts of the Brillouin zone. Diffraction be-
comes positive in the range p

2 , jkxdj < p, enabling
light beams to experience anomalous diffraction, i.e., of
opposite sign to that experienced in nature. Moreover,
diffraction completely disappears around the two points
kx � 6

p

2d . Recently, a similar effect was shown to hap-
pen in photonic crystals [20].

We first demonstrate the basic properties of discrete
diffraction. Arrays of 61 single-mode strip waveguides
were fabricated on top of a planar waveguide. The slab
waveguide consists of a 1.5 mm layer of Al0.18Ga0.82As
core between two Al0.24Ga0.76As cladding layers of 1.5
and 4 mm. The waveguides were patterned by etching
0.95 mm of the upper 1.5 mm cladding, thus lowering the
effective refractive index below the etched area. Each strip
waveguide is 4 mm wide and the separations between their
centers were either 8 or 9 mm. Arrays were tilted from the
normal to the input facet, to achieve easy coupling condi-
tion into specific kx range of modes. The angles corre-
sponded to various values u � kxd in the range of 0 to p

[p equivalent to a tilt angle of a � sin21� u

kd � � 1.5± in
our configuration]. Light was injected using a 340 objec-
tive and cylindrical optics in order to shape the input beam.
Images of the output facet of the sample were taken with
an IR camera. All experiments were done using a synchro-
nously pumped optical parametric oscillator (OPO) tuned
to a wavelength of 1.53 mm.

Cross sections of the output fields from samples with
d � 9 mm (3.0 coupling lengths in the 6 mm long
sample) are presented in Fig. 2. The input Gaussian beam
[21] with w0 � 21 mm excited mostly three waveguides.
The beam expanded to 42 mm when propagating in the
untilted array. In comparison, it expanded to 54 mm in a
continuous slab waveguide. For u � p

2 , where diffrac-
tion should vanish, the output field broadened to only
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FIG. 2. Input and output intensity profiles. Input beam was
21 mm wide. Under continuous and normal discrete diffraction,
the beam expands by about a factor of 2. At zero diffraction
condition, the broadening is mainly due to remanent higher or-
ders. Inset: A sketch of the waveguides.
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29 mm. It also exhibited an asymmetric profile, attributed
to the remanent third order diffraction. This field shape
resembles the temporal shape of an optical pulse after
traveling in a “zero dispersion” fiber, experiencing mostly
third order dispersion [22].

We propose to use these properties in order to design
structures with a customized diffraction relation. Borrow-
ing the idea of dispersion management from optical fiber
technology [2], we suggest to use the cascading of differ-
ent short segments of waveguide arrays in order to achieve
a desired average diffraction. The diffraction relation of
each segment is determined by three physical parameters,
namely the period, the coupling strength, and the tilt angle.
The array period determines the frequency of the cosine
in the diffraction curve [Eqs. (3)], the tilt angle determines
the phase, and the coupling between waveguides and the
array length affects its amplitude. Therefore, in order to
design a waveguide with a specific diffraction curve, one
should span the desired curve with the appropriate Fourier
series of cosine and sine functions and fabricate a cascade
of the corresponding angled arrays. The segment’s length
can be much shorter than the overall length, as long as it is
not comparable to the waveguide spacing d. For diffrac-
tion management, in contrast with just diffraction compen-
sation, the segments need to be shorter than the coupling
length p�2C.

One simple realization of these ideas is a sequence of
arrays with alternating tilt angles. In such a structure, the
dominant diffraction term Dd can be controlled without
significant contribution from higher orders. In particular,
for u � p

2 the average diffraction curve is

�Dz� � 2Cd2

∑
cos

µ
kxd 2

p

2

∂
1 cos

µ
kxd 1

p

2

∂∏
� 0 .

(4)

This implies a complete cancellation of all orders of
diffraction.

Arrays of zigzag waveguides, 5 and 6 mm long, were
fabricated. The structure was segmented into 200 mm
long sections, tilted alternately by a and 2a. Arrays with
the same range of angles as before were tested, but this
time d � 8 mm (4.2 coupling lengths). Results for 5 and
21 mm input beams are presented in Figs. 3 and 4, respec-
tively. The narrow input excites a broader band of spatial
frequencies. All curves are normalized to have the same
maximum value. The absence of diffraction at u � p

2 is
obvious. The output field profile of a zero diffraction wave-
guide resembles the input field, and it is significantly nar-
rower than the field coming out of a straight array (u � 0).
Note that the broad beam produces a smoother, low back-
ground output. Although it behaves much like a continu-
ous beam, it expands according to discrete diffraction.
The results are compared to two numerical solutions of
the problem: a coupled-mode theory (CMT) solution [23]
of a finite set of ordinary differential equations (ODE’s)
with the Runge-Kutta method and a 2D beam propaga-
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FIG. 3. Output intensity profiles after propagation of a 5 mm
wide input through zigzag arrays. Upper graph: Experimental
results for various tilt angles. Lower graph: Calculated output
by beam propagation method (continuous lines) and coupled
mode theory (vertical bars). Inset: A sketch of the waveguides.

tion method (BPM) for solving the evolution of the optical
field. The experimental results match the BPM solution
quite well, while deviating from the CMT solution for u

larger than p
2 and for the broader beam also for u � 0.

The Floquet-Bloch analysis predicts a second diffraction
branch (band, in the solid state analogy) that spans the
spatial modes which are complementary to the waveguide
modes. The second branch modes have maxima in be-
tween the waveguides and lower propagation constants kz .
They are not included in the CMT analysis. The sign of
diffraction in the second branch DII

d is generally opposite
to that of the first branch Dd . For angles approaching p

the two branches are closer and more light is coupled to
the second branch, hence CMT is expected to fail. The
sharp turn point of the zigzag waveguides also contributes
to the transfer of energy between the branches. Because
BPM simulation solves the propagating field directly, it
fits much better than CMT to the experimental results.

Controlled diffraction can be useful in many situations.
For example, the spatial equivalent of the temporal
stretched-pulse amplifier can be built using a semicon-
ductor optical amplifier in order to increase saturation
powers. A beam should be first broadened by a waveguide
with normal diffraction, and after amplification it could be
1865
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FIG. 4. Same as Fig. 3 for a 21 mm wide input. Inset: widths
for the experimental output profiles.

compressed using diffraction of the opposite sign. Also, in
planar waveguide lasers, where nonlinear filamentation is
limiting the output power level, negative diffraction could
eliminate modulational instability and the waveguide will
be self-defocusing.

Diffraction relation can be engineered to have an arbi-
trary shape by a series of arrays with different spacings.
For example, a triangular shaped diffraction leads to propa-
gation without diffraction, in only two specific directions.
Such a periodic triangular function is spanned by the seriesP

n
cos��2n21�kxd	

�2n21�2 , which can be approximated well by just
the first two terms. Note that such a structure requires al-
ternating waveguides with different periods, however, we
have previously verified experimentally that coupling effi-
ciency is almost unaffected by the array structure [24].

The ability to engineer diffraction opens several pos-
sibilities for spatial soliton physics. Dark solitons in
self-focusing media can be demonstrated in negative
diffraction geometries [25]. Diffraction managed spatial
solitons [3,4] could be formed at powers much smaller than
those which are required in slab waveguides. This kind
of spatial soliton can be the building block for low power
all-optical soliton switches.

In conclusion, by borrowing ideas from dispersion man-
agement, we propose a technique to exploit the negative
curvature of the diffraction curve of light in waveguide
1866
arrays in order to control diffraction. We fabricated and
demonstrated waveguides with diminished, canceled, and
reversed diffraction. We believe that the ability to control
diffraction could prove useful to various linear and non-
linear guided wave devices.
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