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Conditional homodyne detection is proposed as an extension of the intensity correlation technique
introduced by Hanbury-Brown and Twiss [Nature (London) 177, 27 (1956)]. It detects giant quadrature
amplitude fluctuations for weakly squeezed light, violating a classical bound by orders of magnitude.
Fluctuations of both quadrature amplitudes are anomalously large. The squeezed quadrature also exhibits

an anomalous phase.

PACS numbers: 42.50.Dv, 42.50.Lc

The development by Hanbury-Brown and Twiss (HBT)
of the technique of intensity cross-correlating light [1] has
had important ramifications in quantum optics. It provided
the stimulus for a systematic treatment of optical coherence
within the framework of quantum mechanics [2] and led
to digital, photon counting implementations, applied in
measurements of the photon statistics of laser light [3,4],
and, ultimately, of nonclassical light sources [5—7].

A notable feature of the HBT technique is that it makes
a conditional measurement, detecting the intensity fluc-
tuations by collecting data on the cue of a conditioning
photon count that identifies times when a fluctuation is in
progress. The average fluctuation is recovered as a condi-
tional evolution over time and a sensitive probe of its non-
classical features is provided. Thus, photon antibunching
is detected with relative ease [5]; on the other hand, direct
observation of the related sub-Poissonian effect is very dif-
ficult, because it relies on a low-efficiency nonconditional
measurement [8,9].

Conventionally, quadrature squeezing is detected non-
conditionally [10]; effectively, the sub-Poissonian variance
of a photon counting distribution is measured with the pho-
ton counts integrated over many correlation times. The de-
tection is insensitive for light of low photon flux, and the
squeezing is degraded by inefficiencies. The time evolu-
tion of the fluctuations is not observed since the measure-
ment is resolved in the frequency domain.

In this Letter we propose a method for the conditional
homodyne detection (CHD) of the quadrature amplitude
fluctuations of light. The measurement cross-correlates a
photon count with the current of a balanced homodyne de-
tector in a natural extension of the HBT technique. It is
in principle very sensitive to the fluctuations of weakly
squeezed light and shows only a signal-to-noise depen-
dence on detection efficiency. Given sufficient bandwidth,
it resolves the fluctuations in time.

The proposed correlator is illustrated in Fig. 1. The de-
sign is based on the “start”/“stop” scheme used in modern
implementations of the HBT technique [5—7]. The main
difference is the homodyne detector which replaces the
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photon multiplier, or avalanche photon diode, in the stop
channel. Within a few correlation times before and after
each start, the homodyne current /(¢) is digitized, recorded,
and used to update a cumulative average. Averaging N,
such samples reduces the shot noise; the surviving signal is
a conditional average of the quadrature amplitude fluctua-
tions. Since the signal is nonzero only if there is a bias
towards fluctuations of a definite sign, a coherent offset of
the source field is generally required. By adjusting the off-
set phase in parallel with the phase of the local oscillator,
any quadrature amplitude can, in principle, be measured; a
similar offset is used in schemes for quantum state recon-
struction [11-13]. In Fig. 1, the source is quasimonochro-
matic with emitted field /2 & and photon flux 2{a*a) per
inverse half-width (the units of time are inverse half-widths
throughout). The input field to the correlator is

V2bh = V2(a + Ae'?), (1)

where it is assumed that the offset, with amplitude Aei?,
is added without loss from the source field at the beam
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FIG. 1. In conditional homodyne detection a coherent offset
is added to the source field v/2@ to produce the input field
V2 b. A fraction r of the input photon flux is sent to a balanced
homodyne detector, and the rest goes to a photon counter which
triggers the sampling of the homodyne current. An ensemble
of samples, {I(t; + 7),j = 1,...,N;}, —Tmax = 7 = Tax, 18
averaged to recover a signal out of the shot noise.
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splitter. Vacuum terms are omitted in the field operators
V2 a and /2 b.

In general, the scheme in Fig. 1 measures a third-order
correlation function of the field v/2b. It correlates the
photon number 7, = btb with the quadrature amplitude
by = (be™ + H.c.)/2, where 6 is the local oscillator
phase. Specifically, assuming the homodyne detector has
the impulse response e ', the measured signal is

Hen = Err [ (A OPo) jris—n 1 g (),
- i)
@

where r is the reflection coefficient at the correlator in-
put, :: denotes time and normal ordering, and E(7) is the
residual shot noise, with correlation function Z(7)=2(7/) =
(T/2N,)e TI7=7l The residual noise increases with de-
tection bandwidth I" in the standard way, and I" > 1 is
required to resolve the source fluctuations in time. Nj
must be large enough to keep the noise below the signal
level. Squeezing is revealed by a second-order correlation
function of the field. The connection with H(7) is made
by writing b = (b) + Aa, separating the mean field (b)
from the source-field fluctuation. We then assume that
third-order moments in Aa’ and Aa vanish. This is true
exactly if the fluctuations are Gaussian, or it may be ap-
proximately valid because the source field is weak. The
offset is adjusted to match the phase of (b) to the local
oscillator phase and its amplitude to the size of the rms
fluctuation. With

(b) = \[(AatAaye’?, (3)

and in the limit I" > 1, we thus obtain

_ _H(@) (:Aag(0)Aag(7):)
"= T i) @ataay 40
“4)

where ag = (de Y + H.c.)/2, and the scaled shot noise
variance is £(7)2 = I'/16rN,|(h)|?. In Eq. (4) we see that
the proposed correlator achieves a squeezing measurement,
since the spectrum of squeezing is [14]

So(w) = 8<ﬁb>f0 drcos(wt)[he(r) — 1].  (5)

(The overbar denotes the average over the residual shot
noise.)

It is notable that the measurement is independent of the
fraction of light sent to the homodyne detector; r appears
only in the signal-to-noise ratio [15]. Other schemes are
known for autocorrelating the quadrature amplitudes of
light [16,17], of which one is also efficiency independent
[17]. In that case, though, a standard HBT arrangement
is used, from which the field correlation is extracted in
an indirect manner. Conditional sampling in homodyne
detection has also been proposed before [18], however, in
a limited application which (i) requires a source of photon
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pairs, (ii) does not correlate quadrature amplitudes, and
(iii) shows the usual dependence on detection efficiency.

The efficiency independence is less remarkable than the
giant fluctuations revealed by Eq. (4). The standard signa-
ture of squeezing is a reduced shot noise level, interpreted
as a deamplification of the vacuum fluctuations. CHD pro-
vides a different view. The shot noise is irrelevant; ideally
it is eliminated through the conditional average. The fo-
cus, then, is on the fluctuations of the light emitted by the
source, which violate inequalities that a classical field must
satisfy. Equation (4) uncovers the nonclassicality. It does
this for the squeezed quadrature, as one would expect, but
more surprisingly, it also shows the fluctuations of the un-
squeezed quadrature to be nonclassical. There is a single
underlying anomaly: the individual quadrature variances
are incompatible with the fluctuation intensity

(AatAa)y = ((Aag)™) + C(Adp+npp)*).  (6)

Classically, the quadrature variances are positive. It fol-
lows then, from Egs. (4) and (6), that

0=nhe(0) —1=1. (7a)
More generally, one proves the Schwarz inequality
lho(T) — 1| = |he(0) — 1] = 1. (7b)

In actual fact, one of the variances is negative whenever
there is squeezing below the quantum limit. This allows
the squeezed (unsqueezed) fluctuations to violate the lower
(upper) bound of (7a) and fluctuations in either quadrature
to violate (7b). Giant violations occur if the photon flux
is low. For the degenerate parametric oscillator [19], for
example, with pump parameter A << 1

((Aax)*)y = A1 + N)/4, (8a)
((Aay)*)y =~ —=A(1 — 1)/4, (8b)
(AaTAa) = A%)2. (8c)

The ratio (:(Ady.y)*:)/{AatAa) is of the order of 1/A.
The classical bounds might be exceeded by a factor of 10
or even 100.

To illustrate this prediction, we have implemented CHD
within quantum trajectory theory [20] and simulated it for
various light sources. Quantum trajectory theory is formu-
lated around the experimental data, viewed as a stochastic
measurement record. In the present case, the record com-
prises a continuous homodyne current, I(z), and a set of
start times {z;}. The source quasimode is in a quantum
state |¢yrgc (¢)), conditioned on the accumulated measure-
ment record. Realizations of 1(¢), {z;}, and |rgc (7)) obey
a set of stochastic differential equations which we simulate
on a computer. We sample an ongoing realization of I(r)
extending over many starts and calculate

1 &
H(r) = N I+ 7). )
S j=1

We do not assume Gaussian noise or make explicit use of
Eq. (2) or Eq. (4). [Equation (2) is derived from Eq. (9)
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by writing 1(r) =T [, dQ, e"7" and evaluating the
sum over j as an average over past and future (before and
after t;) measurement records [21].]

The stochastic process is formulated following the prin-
ciples outlined in Secs. 8.4, 9.2, and 9.4 of Ref. [20], gen-
eralized to include the coherent offset and to combine a
continuous evolution under homodyne detection with the
quantum jump conditioning, |¢rec) — b|rec), at the
start times #;. (An overbar indicates that the quantum state
is not normalized.) The probability for a start count in time
step dt is 2(1 — r){i,(t))rEcdt. Between starts, |/rgc)
evolves continuously under a stochastic Schrédinger equa-
tion. The evolution is conditioned on the ongoing realiza-
tion of the charge,

dQ; = V8r{bg)recdr + dW,, (10)

deposited in the homodyne detector output circuit between
t and ¢ + dt; the Wiener increment dW, incorporates the
shot noise. For the arrangement of Fig. 1, we obtain the
conditional Schrodinger equation

dlrec) = [(Hs/ih — 2Ae™"a)dt
+ V2rbe dQgrec),  (11)

where H s 18 the non-Hermitian source Hamiltonian. The
stochastic process dQ; has bandwidth 1/dt. Construc-
tion of the homodyne current with realistic detection band-
width is modeled on the filtering of an RC circuit (I' =
1/RC)—i.e.,

dl = —T'(ldt — dQ,). (12)

(In Figs. 3 and 4 spontaneous emission is also present.
This is included in the standard way through additional
quantum jumps.)

Figures 2(a) and 2(b) present results for the degenerate
parametric oscillator. They demonstrate that well below
threshold, where the squeezing is small (8% at line center),
the classical bounds are dramatically violated. Note in par-
ticular the anomalous phase of the fluctuation in Fig. 2(b).
Here, although the sampling of I(z) is triggered on photon
counts, the average records a fluctuation that is out of phase
with the offset—triggering should be more probable for
in phase fluctuations. Equation (4) holds for broadband
detection and matches curve (i) very well. Curves (ii) and
(ii1) illustrate how the time resolution is lost as the detec-
tion bandwidth is reduced.

We emphasize with Fig. 2(c) that we do not simply re-
port an alternate method for the detection of squeezing.
Conditional homodyne detection provides a wholly new
view of the nonclassicality of squeezed light. As Fig. 2(c)
shows, the violation of inequality (7a) increases as squeez-
ing, i.e., A, decreases. This is explained by noting that
for small A CHD detects fluctuations which are isolated
in time—fluctuations associated with the infrequent emis-
sion of two-photon pulses. The pulses produce highly
bunched HBT correlations— g?(0) ~ 1/A2. Conditional
homodyne detection resolves the intensity correlation into
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FIG. 2. Quantum trajectory simulation of CHD for the
degenerate parametric oscillator: (a) X-quadrature amplitude
(unsqueezed), (b) Y-quadrature amplitude (squeezed); with
intracavity photon number (ata) =2.0 X 107* (A = 0.02),
r =05, N, =10000, and (i) ' =10, (i) I' = 0.5, and
@iii) T' = 0.1. The dashed lines are the classical bounds.
(c) hx(0) — 1 (i) and hy(0) — 1 (ii) as a function of A.

quadrature amplitude components, uncovering field fluc-
tuations that are similarly large, while in addition reveal-
ing the anomalous phase.

Figures 3 and 4 illustrate CHD applied to cavity QED,
where nonclassical HBT correlations have been observed
[6,7] and interpreted as an indirect manifestation of quadra-
ture squeezing [17,22]. The spectrum of squeezing is
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FIG. 3. Quantum trajectory simulation of CHD for single-atom
cavity QED: (a) X-quadrature amplitude (in phase with the mean
field), (b) Y-quadrature amplitude; with dipole coupling constant
g = 6, atomic decay rate y = 2, intracavity photon number
(atay =28 X 1074, r = 0.5, N, = 10000, and ' = 10. The
dashed lines are the classical bounds.
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FIG. 4. Quantum trajectory simulation of CHD for many-
atom cavity QED: (a) X-quadrature amplitude (in phase with
the mean field), (b) Y-quadrature amplitude; with atomic beam
density N = 3, transit time wy/v = 2.9, dipole coupling
constant gmax = 3.77, atomic decay rate y = 1.25, intracavity
photon number {ata) = 1.5 X 107*, » = 0.5, N, = 20000,
and I' = 10. The dashed lines are the classical bounds. Curve
(c) is the spectrum of squeezing obtained from the X-quadrature
simulation.

the so-called “vacuum Rabi” doublet [23]. The fluctua-
tions therefore develop as spontaneous Rabi oscillations.
Squeezing is evident from the anomalous phase of the os-
cillation [Figs. 3(a) and 4(a)], where again, giant violations
of the inequalities may be observed. Results for one atom,
shown in Fig. 3, continue to hold in an atomic beam with
a reduced size of the violation of the classical inequalities
(Fig. 4). An experiment for the latter case will be reported
elsewhere [24].

We have proposed a new technique for studying the
quantum fluctuations of light, building on the seminal work
of Hanbury-Brown and Twiss. The technique records the
time evolution of quadrature amplitude fluctuations and
can detect giant violations of classical inequalities.
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