
VOLUME 85, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 28 AUGUST 2000
Effects of Local Fields on Spontaneous Emission in Dielectric Media
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The local-field renormalization of the spontaneous emission rate in a dielectric is explicitly obtained
from a fully microscopic quantum-electrodynamical, many-body derivation of Langevin-Bloch operator
equations for two-level atoms embedded in an absorptive and dispersive, linear dielectric host. We find
that the dielectric local-field enhancement of the spontaneous emission rate is smaller than indicated by
previous studies.
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In the formative period of nonlinear optics, Bloember-
gen taught us that the nonlinear optical effects of a di-
lute collection of atoms that are embedded in a dielectric
host are enhanced by local-field effects [1]. Now, in the
era of quantum optics, researchers are again looking at
the interaction of dielectric materials, the radiation field,
and resonant atoms. Central to these investigations are ef-
forts to quantize the electromagnetic field in dielectrics.
One widely used technique is to quantize the macroscopic
Maxwell equations in which the classical constitutive re-
lations have been assumed [2–7]. In the microscopic ap-
proach, a generalized Hopfield transformation, based on
Fano diagonalization, is used to obtain the polariton modes
of the coupled field-oscillator system [8–10]. These quan-
tization methods are well established for dielectrics with
negligible absorption, and techniques to deal with the spe-
cial requirements of quantizing the field in absorbing di-
electrics are beginning to emerge [5–7,9,10].

Since Purcell first predicted the alteration of the emis-
sion rate of an excited atom due to an optical cavity [11],
it has become well known that the observed spontaneous
emission rate of an atom depends on its environment.
When the quantized coupled field-dielectric theories are
applied to the spontaneous emission of a two-level atom
embedded in an absorptionless dielectric, the relation

Gdiel
SE � n�2G0 (1)

is obtained [3,4,7,8,10]. Here, n is the linear index of re-
fraction and � is the dielectric local-field enhancement fac-
tor, G0 is the vacuum spontaneous emission rate, and G

diel
SE

is the enhanced spontaneous emission rate in the dielectric.
Both the Lorentz virtual-cavity model � � �n2 1 2��3 and
the Onsanger real-cavity model � � 3n2��2n2 1 1� have
been utilized in various studies of local-field effects on
spontaneous emission.

One of the key features of these approaches of applying
the quantization of fields in dielectrics to spontaneous
emission is that the oscillators that comprise the dielectric
host are assumed to be unaffected by the presence of the
embedded atom. The dielectric medium, as well as the
field, is treated as a local condition at the site of a resonant
atom such that the atom interacts with an all-pervasive,
nonlocal, quantized effective field, the vacuum polariton
modes, rather than the local vacuum radiation field modes
and the oscillators. Because the near-dipole–dipole inter-
action is the fundamental interaction underlying the
Lorentz local field, a many-body approach that explicitly
deals with the vacuum radiation field modes and the
interactions of the atom with the nearby polarizable par-
ticles of the host is clearly needed to accurately evaluate
the effects of local fields on spontaneous emission in
dielectric media.

In this Letter, we develop Langevin-Bloch operator
equations of motion for a two-level atom, or a collec-
tion of two-level atoms, embedded in a dielectric host
medium. We begin the development from a fully mi-
croscopic many-body viewpoint in which the material is
treated as a disordered mixture of two different species
of two-level systems and derive Heisenburg equations
of motion for the material and field mode operators.
Adiabatically eliminating the variables associated with
the quantized field modes results in coupled equations
of motion for the material variables. We take the har-
monic oscillator limit for one species by assuming that
its resonance frequency is sufficiently detuned from the
primary species that the atoms remain in the ground state.
Adiabatically eliminating the harmonic oscillators results
in a Langevin-Bloch formulation for two-level systems
embedded in a dielectric host that exhibits local-field re-
normalization of the fluctuations, the near-dipole–dipole
(NDD) interaction of the two-level atoms, the radiation
field, the dephasing rate, and the population decay rate. In
the limit of a single two-level atom prepared in the excited
state, we obtain

Gdiel
SE � Re���G0 (2)

for the renormalized spontaneous emission rate. In our
many-body derivation, the dielectric local-field enhance-
ment factor � � �n2 1 2��3 arises from the interaction of
the embedded atom with the nearby polarizable particles
of the host via the electromagnetic field. The linear index
of refraction is complex and properly accounts for the fre-
quency dispersion and absorption of the dielectric.
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We consider a disordered mixture of two species, a
and b, of two-level systems. The two-level systems are
coupled only via the electromagnetic field. We allow
for the possibility of an externally applied probe or
driving field that is taken, for convenience, to be in
a coherent state. The constituents of the total Ham-
iltonian are the Hamiltonians for the free atoms, the
free quantized radiation field, and the interaction of the
two-level systems with the quantized electromagnetic
field. We have, in the electric-dipole and rotating-wave
approximations,
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where a
y
l and al are the creation and destruction op-

erators for the field modes and vl is the frequency of the
field in the mode l. The vacuum dispersion relation is used
throughout, e.g., �kl � k̂lvl�c, where k̂l is a unit vector
in the direction of �kl . For species a, s

j
3 is the inversion

operator and s
j
6 are the raising and lowering operators

for the jth atom, g
j
l � �2pvl�h̄V �1�2map̂j ? ê �kl ,s is the

coupling between the atom at position �rj and the radiation
field, p̂j is a unit vector in the direction of the dipole
moment at �rj , va is the transition frequency, ma is the
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dipole moment, Va � maE�h̄ is the Rabi rate, and E is
the field envelope with carrier frequency vp . For species
b, z

n
3 , z n

6, hn
l , �rn, p̂n, vb , mb , and Vb � mbE�h̄ perform

the same roles. Also, V is the quantization volume, ê �kl ,s
is the polarization vector, and s denotes the state of
polarization.

The Heisenberg equations of motion for the material and
field mode operators
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are derived from ih̄�dO�dt� � �O, H�. From this point,
we adopt normal ordering in which a

y
l appears to the left

of the atomic operators and al appears to the right.
The Heisenberg equations of motion for the material

variables are obtained by elimination of the variables as-
sociated with the quantized field modes [12]. Then,
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Using standard QED methods in the Markovian approximation [12–14], this immediately reduces to
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in a frame of reference rotating at vp , such that Da �
vp 2 va. In the context of the analysis of Ref. [12],
with normal ordering, f1 is a Langevin force operator
arising from fluctuations of the vacuum field, the dephas-
ing rate ga�2 is half of the population decay rate ga �
4v3

ajmaj
2��3c3h̄� that is associated with the self-field un-

der the condition i � j, and ea � 4pNajmaj
2��3h̄� is the

strength of the near-dipole–dipole (NDD) interaction due
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to the reaction field of all other atoms, i fi j, of species
a, where Na is the relevant number density and s2 is a
local spatial average of the operator [14,15]. The last term
in Eq. (3) is the contribution of the reaction field from
all the atoms of species b to the jth atom of species a.
Similarly,
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is the equation of motion of the inversion operator. In the harmonic oscillator limit for species b, we have
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where Db � vp 2 vb , gb � 4v
3
bjmbj

2��3c3h̄�, and
eb � 4pNbjmbj

2��3h̄�. Equations (3)–(5) are coupled
operator equations for a material composed of two-level
systems and harmonic oscillators. None of the relevant
parameters for the two-level systems are renormalized
by the presence of the host medium as long as we retain
separate equations of motion for the oscillators. The next
step is to adiabatically eliminate the equations of motion
for the oscillators by substituting the formal integral of
Eq. (5) into Eqs. (3) and (4). Thus
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where z m
1 �0� � 0 and a � i�Db 1 eb 1 igb�2�.

The last term is the part of the reaction field that is due
to the presence of the harmonic oscillators and their subse-
quent adiabatic elimination. The square bracket contains
terms that are largely equivalent to all of the original field
components, the coherent field, vacuum fluctuations, the
self-field, and the reaction field, and will lead to the renor-
malization of each. The self-field contribution, i � j, in
which the atom couples to itself via the linear particles, can
be evaluated using the transverse delta function [8]. The
reaction field contribution, the near dipole-dipole interac-
tion of all the i atoms with atom m, is of the same form as
the NDD interaction of the i atoms with atom j that was
studied in Ref. [14] and used in obtaining Eq. (3). We
refer to this interaction as a many-atom Milonni-Knight
problem [14,15]. The sum in the square brackets
becomes
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In the last term of Eq. (6), note that [13]Z t0

0
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since the exponential is strongly peaked near t0 � t00. Be-
cause �rm fi �rj , the remaining part of the last term in
Eq. (6) is again the many-atom Milonni-Knight problem.
Then the portion exterior to the large square brackets is
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where Nb is the number density of oscillators, species b,

� �
n2

b 1 2
3

(10)

is the complex Lorentz dielectric local-field enhancement
factor, and nb is the Drude-Lorentz index of refraction of
the dielectric. Using (7) and (9) in Eq. (6), we obtain
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A similar calculation for the equation of motion of the
inversion operator, Eq. (4), yields
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Equations (11) and (12) can be considered as operator
Langevin-Bloch equations of motion for a dense collec-
tion of two-level atoms embedded in a dielectric medium.
The effect of the adiabatically eliminated damped linear
oscillators is contained in the complex Lorentz dielectric
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enhancement factor � that renormalizes the coherent field,
the Langevin force operator, the NDD interaction, the de-
phasing rate, and the population decay rate. We have ne-
glected Cauchy principle parts throughout and there will
be local-field enhancement effects from these, as well,
e.g., renormalization of the Lamb shift by Re���. The re-
sults of our fully microscopic many-body QED treatment
agree with semiclassical results for local-field enhance-
ment of the coherent field [1] and the NDD interaction
[16], if expectation values are taken in the limit of classi-
cal factorization. It was our semiclassical derivation of the
“anomalous” renormalization of NDD interaction in a di-
electric host [16], by � rather than j�j2, that indicated a
need to examine the problem in its entirety. Because the
quantum-limited decay rates, which are related to the spon-
taneous emission rate, and the NDD interaction have the
same dependence on the dipole moment and arise in the
same way from the elimination of the field operator, one
would expect them to have the same renormalization in a
dielectric. We have shown that this is the case.

Next, we consider a single two-level atom embedded in
a dielectric host. In the Hamiltonian, the sum over the j
atoms reduces to the single atom. There is no sum that
leads to s6 and the Bloch-Langevin equations of motion
for a single two-level atom in a dielectric are given by
Eqs. (11) and (12) where the terms containing s6 are
dropped. Then the effective spontaneous emission rate
for an inverted atom in a dielectric is the renormalized
population decay rate at resonance,

Gdiel
SE �

1
2

�� 1 ���ga � Re���G0 . (13)

The outcome of this fully microscopic many-body theory
differs from prior work in which some variant of n�2 was
obtained as the renormalization factor [3,4,7,8,10]. A com-
mon element of these treatments is the use of the wave
number k � nv�c or, equivalently, the classical density
of states. This introduces, phenomenologically, a macro-
scopic material parameter and relies on the assumption that
the dielectric, which consists of a large quantity of matter,
is not affected by the atom. We find that the origin of
the local-field renormalization of the spontaneous emis-
sion rate is the microscopic near-dipole–dipole interaction
in which the influence of the atom on each nearby oscilla-
tor is fed back to the atom [17].

There have been a number of measurements of the
spontaneous emission rate of embedded atoms, or
atomlike particles, in a dielectric [18]. However, these
experiments typically involve nontrivial boundary con-
ditions, such as ligand cages or nanospheres, that can
profoundly affect the observed spontaneous emission
rate. To date, we know of no measurements of the
index dependence of the spontaneous emission rate in
a bulk dielectric. The complete theory presented here
makes it possible to bring the entire arsenal of laser
1854
spectroscopy to bear on the measurement of local-
field effects due to a dielectric background. For example,
because even small frequency shifts can be resolved spec-
troscopically, it might be possible to verify our results by
measuring the level shift Im���ga�2 or the renormalization
of the Lamb shift by Re��� as a function of the density of
a buffer gas.

In conclusion, we obtained the renormalization of the
spontaneous emission rate of an atom embedded in a di-
electric host. This result was obtained from a fully micro-
scopic many-body derivation of Langevin-Bloch operator
equations for two-level atoms embedded in an absorptive
and dispersive dielectric host. The local-field enhancement
of the coherent field, the Langevin force operator, the NDD
interaction, and the damping rates all stem from the same
reaction field that arises from the nearby oscillators, neces-
sitating the full many-body derivation. We found that the
dielectric enhancement of the spontaneous emission rate is
much smaller than indicated by previous studies. This is
an enabling result, paving the way for application of high-
index materials to enhance nonlinear and quantum optical
effects.
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