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Phase Control of Photoabsorption in Optically Dense Media
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We present a self-consistent theory, as well as an illustrative application to a realistic system, of phase
control of photoabsorption in an optically dense medium. We demonstrate that, when propagation effects
are taken into consideration, the impact on phase control is significant. Independent of the value of the
initial phase difference between the two fields, over a short scaled distance of propagation, the medium
tends to settle the relative phase so that it cancels the atomic excitation. In addition, we find some rather
unusual behavior for an optically thin layer.

PACS numbers: 32.80.Qk, 32.80.Rm, 42.50.Gy, 42.50.Hz
After the initial ideas [1] and experimental demonstra-
tion [2,3] of the feasibility of the control of photoabsorp-
tion and its products through the control of the relative
phase of two fields, much work in atoms [4] and molecules
[3] has explored a variety of processes. Many interesting
issues [3–5] have been raised and clarified, establishing
thus the idea as a useful tool. With the exception of one
paper [6], however, theory and experiment have dealt only
with single-atom (molecule) situations. But, if the ideas
are to be contemplated for applications, the issue of propa-
gation is crucial. Addressing this issue is the purpose of
this Letter.

We have chosen the fundamental scheme [2,5] which
has served as a benchmark for much of the initial and the
continuing work. We consider the excitation of a bound
transition through the combined effect of a single- and
a three-photon transition via two fields whose relative
phase is controlled externally. We formulate and examine
the propagation of a bichromatic electromagnetic field E
through an optically dense medium consisting of Xe atoms.
This electric field is a function of time t and space coor-
dinate z and is composed of the fundamental and its third
harmonic fields that have the same (linear) polarization
and frequencies vf and vh � 3vf , respectively. It is ex-
pressed as

E�z, t� �
1
2

�Efei�kfz2vf t� 1 Ehei�khz2vht� 1 c.c.� ,

(1)

where Ej � Eje2ifj , j � f, h, with Ej and fj the slowly
varying in time and space real amplitude and phase of
the corresponding field, and kj � vjnjc21, with nj the
refraction index of the host medium at frequency vj . Al-
though in our present treatment the host medium is vac-
uum, and thus nf � nh � 1 and kh � 3kf , for the sake of
generality, e.g., presence of a buffer gas, we shall keep in
the formalism the refraction index. The frequencies vh,f
are chosen so that one harmonic photon and three funda-
mental photons are at near resonance with the transition
from the ground state (j1�) to the 6s state (j2�) of Xe. A
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two-photon transition due to the strong fundamental or a
one-photon transition due to the harmonic fields lead to the
ionization continuum (states jc�) of the atom. As we in-
tend to explore intensities of the fields for which the one-
and three-photon transition amplitudes between states j1�
and j2� are of comparable magnitude so as to maximize
the modulation depth, the transition j2� ! jc� would be
dominated by the two-photon process, and the one-photon
ionization due to harmonic photon can be neglected. Ex-
perimental contexts for the situation we are considering
have been detailed in the literature.

Beginning with the second order wave equation for the
field E�z, t�, in the slowly varying (during an optical cycle)
amplitude approximation one neglects all second deriva-
tives and, after projecting onto the corresponding mode
function exp�i�vjt 2 kjz��, j � f, h, one arrives at

≠Ej

≠z
1

nj

c

≠Ej

≠t
�

1
ce0nj

∑
i

vj

2
Pj 2

≠Pj

≠t

∏
, (2)

where Pj � P0
je2ifj (P0

j being complex) is the slowly
varying in time and space field-induced medium polariza-
tion at frequency vj . Consistently with Eq. (1), it can be
expressed as

P�z, t� �
1
2

�Pfei�kfz2vf t� 1 Phei�khz2vht� 1 c.c.� .
(3)

The most general approach to the calculation of the re-
sponse of the medium is through the atomic density ma-
trix r which obeys the equation ≠tr � 2ih̄21�Hatom 1

D, r�, with Hatom the free atomic Hamiltonian and D �
2mE the atom-field interaction in the dipole approxima-
tion where m is the electric dipole operator. Introducing
the rotating wave approximation and adiabatically elimi-
nating the continuum and all virtual (nonresonant) bound
states (connecting by the lowest-order paths the states
j1� and j2�), the slowly varying density matrix elements
of the two remaining states s11 � r11, s22 � r22, and
s21 � r21 exp�i3�vft 1 ff 2 kfz�� are found to obey
the following set of equations:
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where g is the radiative decay rate of level j2�, gion ~

�m�2�
2c If�2 is the two-photon ionization rate of j2� being pro-

portional to the square of the intensity If ~ E2
f of the fun-

damental (m
�2�
2c is the effective two-photon matrix element

for the fundamental field on the transition j2� ! jc�), m
�3�
12

is the effective three-photon matrix element for the fun-
damental field on the transition j1� ! j2�, s1 and s2 are
the lowest-order Stark shift coefficients (polarizabilities)
of levels j1� and j2�, respectively, and m12 � 	1jmj2� is the
matrix element of the electric dipole operator m. Finally
D is the detuning of both fields from the j1� ! j2� tran-
sition resonance and u � �fh 2 3ff� 2 �kh 2 3kf �z is
their relative phase.

Consider now the polarization P�z, t� � N Tr�mr� of
a medium of atomic density N . In expanding the trace of
this equation, we again follow the same procedure as in ob-
taining Eqs. (4), i.e., we use the adiabatic approximation to
express all density matrix elements that do not refer to the
states j1� and j2� in terms of the three main elements s11,
s22, and s21. Equating the result with Eq. (3), identifying
and grouping together terms oscillating with the same fre-
quencies, we obtain

P0
f � 2N�Ef �s1s11 1 s2s22� 1 3m

�3�
12 E2

fs21

1 ip h̄21jm
�2�
2c j

2E3
fs22� , (5a)

P0
h � 2Nm12s21eiu . (5b)

Those equations, together with the Maxwell equation (2)
and the atomic density matrix equations (4), provide a
complete description of our system in terms of a closed
set of equations.

To present the numerical results for Xe, we use the pa-
rameters calculated previously [5] via multichannel quan-
tum defect theory and appropriately converted to conform
to the present definitions. For illustration purposes, it is
desirable to have a maximally pronounced interference of
the fundamental and harmonic fields. The respective Rabi
frequencies are given by the first and second terms in the
parentheses of Eq. (4a). To obtain, for example, complete
cancellation at u � p when these two terms are purely
real and have opposite signs, it is obvious that the peak
values and the temporal widths of both Rabi frequencies
should be equal so as to overlap completely. Let the strong
fundamental field have a Gaussian temporal profile with a
1844
peak amplitude Emax
f � Ef�t � tmax� and width tf . Then

the peak amplitude and width of the weak harmonic field
should satisfy the relations

Emax
h �

m
�3�
12

m12
�Emax

f �3, th �
tf
p

3
. (6)

In Fig. 1 we plot the ion yield Q � �1 2 s11�t� 2

s22�t��t!` at z � 0 as a function of the relative phase u

for three different intensities If of the fundamental. In all
cases, the detuning D is taken such that it compensates the
relative Stark shift of levels j1� and j2� at the maximum
tmax of the pulse, the harmonic pulse duration th � 1 ns,
and the conditions (6) are satisfied. In this figure, for all
intensities and relative phase u � p, the ionization van-
ishes completely since the two transition amplitudes inter-
fere destructively and the second term on the right-hand
side of Eq. (4a), responsible for the stimulated transition
from j1� to j2�, is equal to zero throughout the duration of
the pulses. Consequently, the medium practically does not
interact with the fields and the atoms are “trapped” in their
ground state j1�. The more surprising result, however, is
that in the case Imax

f � 8 3 1010 W�cm2, maximal ioniza-
tion is found not for u � 0, 2p , as one would expect and
is the case for the other intensities. This is a manifestation
of the quantum-mechanical interference resulting from the
fact that for this set of parameters in Eqs. (4) the terms re-
sponsible for the stimulated transition reach the maxima at
u � p 6 0.28p where the ionization peaks are located.
The numerical simulations also show that, while keeping
the conditions (6) satisfied, with decreasing pulse duration
tf , the ion yield reduces and its peaks at u fi 0, 2p , . . .
gradually disappear, which is analogous to the decreasing
of intensity since the total energy of the pulse lessens. In-
creasing the intensity, however, results in a narrower dip in
the ionization profile and a shift of its peaks towards the
values of u that are closer to p .

Let us turn now to the propagation effects. The results
presented below are obtained for a density of atoms N �
1013 cm23 . This, however, does not imply any limitation
on the generality of the discussion since, as one can easily
verify, the parameter zNS, where S is the laser beam cross
section, is a propagation constant, and thus it is always
possible to rescale the problem to any desired density and
propagation length z. Conditions (6) are assumed at the
entrance to the medium. As we have noted above, in



VOLUME 85, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 28 AUGUST 2000
0.0 0.5 1.0 1.5 2.0
 Relative phase θ π( rad)

0.0

0.2

0.4

0.6

0.8
 I

on
 y

ie
ld

FIG. 1. Ion yield Q � �1 2 s11 2 s22�t!` � 1 2 s11�t !
`� versus relative phase u for three different peak intensities
of the fundamental: Imax

f � 1 3 1010 W�cm2 (dashed line),
Imax
f � 3 3 1010 W�cm2 (dot-dashed line), Imax

f � 8 3
1010 W�cm2 (solid line).

the case of initial phase difference u�0, t� � p, the atoms
stay in the ground state and the medium appears to be
“transparent” to both fields; neither the fundamental nor
the harmonic experience any remarkable distortion of their
shapes or total energy Sj�z� ~

R
dtjEj�z, t�j2, j � f, h,

over distances of propagation z as large as 
50 cm. The
accumulated over this distance change of the relative phase
is only 
1023p rad, which is due to the field independent
phase shift of the fundamental, given by the term in the
parentheses of Eq. (5a).

Consider next the case u�0, t� � 0; i.e., at the entrance
to the cell the two fields interfere constructively. The
results corresponding to the parameters of Fig. 1 with
Imax
f � 8 3 1010 W�cm2 are collected in Figs. 2 and 3.

One can see in Fig. 2 that, in the course of propagation,
the relative phase u (taken at the dynamic pulse maximum
tmax 1 z�c) grows rapidly and over a distance of the order
of 1 cm reaches the value p , at which the initial construc-
tive interference of the two fields turns to destructive. At
the same time, the total energy of the harmonic pulse, af-
ter a small reduction over a short interval of z, begins to
increase as a result of the energy transfer from the strong
fundamental field, in the parametric conversion process.
This small reduction of the harmonic takes place only at
the beginning of the propagation, when the relative phase
is still close to 0 and the two fields interfere construc-
tively, in the process of excitation of atoms from the ground
state j1� to the state j2�, while the generated part of the
harmonic field is out of phase with the fundamental ap-
proximately by p and continues to build up with a slight
oscillation around the value p of the phase. It is impor-
tant to mention that throughout the propagation the ampli-
tude and the phase of the fundamental field do not change
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FIG. 2. Relative phase u�z, t � tmax 1 z�c� (a), normal-
ized energy Sh�z��Sh�0� of harmonic field (b), and ion
yield Q�z� (c) versus propagation length z for the case
Imax

f � 8 3 1010 W�cm2.

significantly. This is because the number of photons con-
tained in that pulse exceeds by many ($ 6) orders of mag-
nitude the number of atoms the pulse interacts with over
the distance of z # 20 cm. Comparing the three graphs
of Fig. 2, one can see that with increasing u and Sh the
ionization probability first also grows, which is consistent
with the previous discussion related to that intensity of the
fundamental field. But as u approaches p , the ion yield
drops almost exponentially until Q � 10%. This residual
ionization that is present even at u � p (and tends to 0
rather slowly) is caused by the fact that, because of the
significant increase of the total energy of harmonic field,
conditions (6) are not completely satisfied and the upper
atomic level j2� acquires population due to that fraction
of the generated field which exceeds the initial. Since the
temporal widths of the pulses are less than the (radiative)
relaxation time of the atomic coherence s21 (g21 � 2 ns),
a significant fraction of the harmonic pulse amplitude is
generated behind the fundamental (Fig. 3). That part of
the amplitude is then attenuated due to the atomic relax-
ation. Thus the total energy of the harmonic, after passing
a maximum at z � 5 7 cm, then decays slowly back. Un-
der these conditions, the leading part of the harmonic pulse
that falls under the temporal shape of the fundamental is by
u � p out of phase with the latter and therefore the ion-
ization vanishes, while the generated tail is continuously
scattered by the atoms in the process of radiative decay.
The oscillations of the relative phase around p are also
slowly damped and the propagation reaches a “dynamic
equilibrium.”

We note finally that a similar behavior of the system is
obtained for a range of intensities we have explored. The
1845
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FIG. 3. Temporal profile of the amplitude Eh of harmonic field
at different z. All parameters are as in Fig. 2.

main difference is that for weaker fields (Imax
f � 3 3 1010

and 1 3 1010 W�cm2) the ion yield does not exhibit a
maximum other than at z � 0 and drops to zero much
faster as z increases, which is consistent with the discus-
sion above.

We have examined the problem of propagation in the
simplest context of phase control, namely, the excitation of
a bound state, which has been used as a prototype in much
of the initial work [1,2]. As discussed here, the problem
bears resemblance to earlier works [7–10] on cancellation
in third harmonic generation experiments, and so does the
whole issue of phase control. The relevance and possi-
ble impact of propagation has been recognized by Chen
and Elliott [6] who presented data and an interpretation in
terms of rate equations [10]. Their study showed evidence
of nonlinear coupling, such as those discussed above, and
called for “more rigorous techniques” in the approach to
this basic problem. In the limit of validity of rate equations,
our results do indeed recapture the equations employed in
their analysis. It will be interesting to explore this issue
under more general conditions, such as the excitation of
states embedded in continua, on which we expect to report
elsewhere. The basic features of our analysis should, how-
ever, remain valid.
1846
In summary, we have shown that the propagation of a
bichromatic field, with a preselected initial relative phase,
has a profound effect. Over a rather short scaled distance
and independent of its initial value, the relative phase
settles to a value that makes the medium transparent to the
radiation, thus precluding further excitation and conse-
quently control. The scaled distance zNS does of course
involve the density of the species and the cross section
of the laser beam, which suggests some flexibility on the
choice of these parameters. In any case, however, the ac-
tual length of the interaction region over which control can
be active will be defined and limited by the combination
of the above parameters, as well as by the geometry of the
focused or unfocused laser beam. Briefly, for not very low
atomic densities (N . 1012 cm23), the harmonic field
settles to the steady-state value within a thin layer where
a focused beam is well approximated by a plane wave. In
the presence of large ac Stark shifts, however, a detailed
analysis including specific experimental parameters is
mandatory.
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