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Extraction of Work from a Single Thermal Bath in the Quantum Regime
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The stationary state of a quantum particle strongly coupled to a quantum thermal bath is known to
be non-Gibbsian, due to entanglement with the bath. For harmonic potentials, where the system can be
described by effective temperatures, thermodynamic relations are shown to take a generalized Gibbsian
form that may violate the Clausius inequality. For the weakly anharmonic case, a Fokker-Planck-type
description is constructed. It is shown that then work can be extracted from the bath by cyclic variation
of a parameter. These apparent violations of the second law are the consequence of quantum coherence
in the presence of the slightly off-equilibrium nature of the bath.

PACS numbers: 05.70.Ln, 05.10.Gg, 05.40.–a
The laws of thermodynamics are at the basis of our un-
derstanding of nature, so we all expect them to govern also
systems coupled to a bath in the quantum regime. How-
ever, recently thought-provoking claims were made about
a violation of Thomson’s formulation of the second law
(the impossibility to do work periodically without losing
heat) [1] and even about a perpetuum mobile acting in an
inhomogeneous superconducting ring [2].

Most of our thermodynamic understanding is based on
the Gibbs distribution. The laws of equilibrium thermody-
namics apply equally well to closed classical and quantum
systems, as to open classical subsystems [3]. The setting
for the classical case is well known: Under general sta-
tistical conditions [3–6] one derives a Langevin equation.
The corresponding probability distribution is described by
the Fokker-Planck equation, and it converges in time to the
Gibbs distribution.

Much less is known about the quantum Langevin
equation [3,4,6–8]. The stationary distribution has been
obtained only for the harmonic potential. It depends
explicitly on the damping constant and becomes Gibbsian
only in the limit of weak damping [3,4], thus preventing
the applicability of equilibrium thermodynamics. Entan-
glement is the very reason of this crucial difference, as
subsystems are necessarily in a mixed state.

In the present paper, we examine the standard model
for quantum Brownian motion, the so-called Caldeira-
Leggett model [9]; see Eq. (1). Here, we employ meth-
ods developed recently for glasses [10]. For a particle in
harmonic potential we define effective temperatures, and
put the thermodynamic relations in a generalized Gibbsian
form. For weakly anharmonic confining potentials Fokker-
Planck equations will be constructed, which allow one to
obtain the stationary distribution and elucidate important
aspects of nonstationary properties.

We shall provide a nontrivial thermodynamic interpre-
tation for the relaxation towards the steady non-Gibbsian
state and for the slow change of a system parameter. Our
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main results are rather dramatic, apparently contradicting
the second law: We show that the Clausius inequality
dQ # TdS can be violated, and that it is even possible
to extract work from the bath by cyclic variations of a pa-
rameter (“perpetuum mobile”). The physical cause for this
appalling behavior will be traced back to quantum coher-
ence in the presence of the near-equilibrium bath.

The quantum Langevin equation is derived from the ex-
act Hamiltonian description of a particle and a thermal
bath, when tracing out the degrees of freedom of the
bath. For t , 0, the particle and bath do not interact, and
the whole system is described by a density matrix r0 �
rb ≠ rs, where rb � exp�2bHb� is the Gibbs distribu-
tion for the bath, and rs describes the state of the particle.
At t � 0 a linear coupling is switched on instantaneously,
and the total Hamiltonian reads as follows for t . 0 [6]:
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where p, pi , x, xi , and m, mi are, respectively, the mo-
mentum and coordinate operators and the masses of the
particle and the modes of the bath. The latter have a con-
stant frequency gap D, so vi � iD. For the couplings we
choose the Drude-Ullersma spectrum [6,8,11],
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where g is the damping constant, quantifying the stength
of interaction, and G is the cutoff frequency of the inter-
action with the bath. The thermodynamic limit is taken
for the bath by sending D ! 0, which creates an infinite
“Heisenberg” time scale 1�D.

For fast switching on the interaction, an amount of work

W0 � tr�r0�H �01� 2 H �02��� �
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has to be supplied to the system. The large internal energy
of the whole system U � 	p2
0�2m 1 	V 
0 1 p2T2�
�6h̄D� � 1�D is increased by the finite amount W0. This
brings the system slightly out of equilibrium, since the
von Neumann entropy tr�2r0 lnr0� is exactly conserved
under the switching. Notice that the switching energy
W0 � 1

2gG	x2
0 is purely a classical effect.
The resulting quantum Langevin equation reads [4,7]

�p 1
gG

m

Z t

0
dt0 e2G�t2t0�p�t0� 1 V 0�x� � h�t� , (4)

with Gaussian noise having 	h
 � 0 and anticommutator

K�t� �
	�h�t�, h�0��


2
�

Z dv

2p

gh̄v coth� 1
2bh̄v�eivt

1 1 �v�G�2 ,

(5)

which is the consequence of quantum fluctuation-
dissipation theorem [3,6]. K�t� has correlation time
max�1�G, h̄�T �, so the quantum noise has a long memory
at low T (“quantum coherence”). Equation (4) with
physically suitable forms of the potential and friction
describes a rich variety of physical phenomena, such as
Josephson junctions [12,13], processes in plasma and con-
densed matter [3,4,8], interaction of atoms with blackbody
radiation [3], and the Lamb shift of an electron [3].

We shall restrict ourselves to the quasi-Ohmic case,
where G is much larger than other characteristic times. For
t ¿ 1�G we may expand the memory kernel in Eq. (4):

G
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Compared to the classical white noise case, one can thus
adjust only the noise [see Eq. (5)], while keeping the fric-
tion instantaneous. The same conclusion was reached in
Refs. [14,15] for the exactly solvable harmonic potential.

Work and heat.—Let us explain the ingredients for the
thermodynamic description of the Brownian particle hav-
ing Hamiltonian H � p2�2m 1 V �x� and Wigner func-
tion W�p, x, t� � 	d���p�t� 2 p���d���x�t� 2 x���
. A change
with time of the mean energy U � 	H
 �

R
dp dx WH

is considered when slowly varying a system parameter
a, such as m or V 00�0�, according to a prescribed trajec-
tory a�t�:

dU � d	H
 � 	Hd lnW
 1 	dH
 . (7)

The last term is the averaged mechanical work dW pro-
duced by external sources [3,16]. For a variation of an
intrinsic parameter (for which dH � dH ), dW is the
change of the total (particle 1 bath) mean energy. The
first term on the right-hand side is due to the statistical
redistribution in phase space. We shall identify it with
the change of heat dQ � 	Hd lnW 
, so Eq. (7) is just the
first law.

In the harmonic case V �x� � 1
2ax2, Eqs. (4) and (6) can

be integrated directly; see, e.g., [6,11,14,15]. In particular,
the stationary Wigner distribution reads
1800
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The effective temperatures Tp and Tx approach T in the
classical limit, and have for large damping, g2 ¿ am, the
following values at T ! 0:
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The Brownian particle has semiclassical behavior due to its
interaction with the bath, and entropy S � Sp 1 Sx with
Sp � 1

2 lnemTp�h̄, Sx � 1
2 lneTx�ah̄.

For an adiabatic variation of a parameter a, the situation
is still described by Eq. (8) with a � a�t�. One can check
for U and the free energy F � U 2 TpSp 2 TxSx:

dU � dQad 1 dWad � TpdSp 1 TxdSx 1 dWad ,
(10)

dF � 2SxdTx 2 SpdTp 1 dWad . (11)

These generalized thermodynamical relations are in close
analogy with those proposed for glassy systems [10].

To demonstrate a violation of the fundamental Clausius
inequality dQ # TdS, we consider a slow variation of the
mass m at T ! 0. Using Eqs. (8)–(10), one gets

dWad � 2Tp
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2m

, dQad �
h̄g

m2p
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2

. (12)

Thus, there is transfer of heat even for T � 0, and the
Clausius inequality is violated when dQ . 0, i.e., for
dm . 0. The latter also happens when varying a.

The Fokker-Planck equation.—Except for the solvable
harmonic potential, Eq. (4) is hardly tractable. Another
approach, having started from (4), goes further to the
weak-coupling (small g) limit described by a Markovian
master equation [4]. In the opposite, strong-coupling limit
one can consider the terms in (4) as c numbers, but with
the quantum noise correlator [12,13]. The correspon-
dence with the underlying quantum problem is established
through the Wigner function. Since this approach is still
exact for the harmonic case, one of the conditions of its
validity involves a characteristic scale L where the nonlin-
earity remains small: L ¿

p
h̄�g [12]. Based on this con-

dition, we have derived a closed equation for the Wigner
function. Here, we give only the final result, while details
will be presented elsewhere [17]:
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For our purposes it is enough to indicate the stationary
values of the diffusion coefficients Dxp and Dpp:
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where K̄�v� is the spectrum of K�t� in Eq. (5) and v1,2 �
�g 6

p
g2 2 4mV 00�x� ���2m�. Equation (13) was de-

rived under the same assumptions as the semiclassical
Langevin equation itself. For ensuring the convergence of
the diffusion coefficients [Re�v1,2� $ 0], we will demand
V 00 $ 0 (local stability). In the classical limit, Dxp ! 0,
Dpp ! T , and Eq. (13) tends to the usual Fokker-Planck
equation [4,11]. For the harmonic case, Dxp and Dpp

become space independent, and Eq. (13) is in agreement
with previous results [11,14,15], obtained for a more
general type of the environment.

In the physically interesting case of overdamped motion,
where the characteristic times of the momenta m�g and co-
ordinate g�V 00�0� are widely separated, g�V 00�0� ¿ m�g,
a solution of the Fokker-Planck equation for t ¿ m�g can
be presented as

W�p, x, t� �
exp�2p2��2mDpp�x, t���q

2pmDpp�x, t�
W�x, t� . (15)

Here, W�x, t� is the solution of a reduced equation
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It still contains the inhomogeneous, time-dependent dif-
fusion coefficient. As we discussed, a large, but finite,
G ¿ v1,2 is necessary only for the statistics of the mo-
menta; see Eq. (9). Taking G ! ` in Eq. (18), we obtain
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In the stationary state, one has J�x� � 0, which implies
for the corresponding distribution

Ws�x� �
e2bVe�x�

Z
,

Ve�x� � T
Z x
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V 0� y� 1 D0� y�
D� y�

,

(20)

where Ve is an effective potential. Notice that Ws�x�
is non-Gibbsian. For the harmonic potential, Eq. (8) is
recovered from this expression while the classical Gibbs
distribution appears in the limit h̄b ! 0. Equations (15)
and (20) show that the statistics of momenta is influenced
by the coordinate, yielding its non-Maxwellian form.
In the classical case, universal (thermodynamical) prop-
erties of the relaxation are described by an H theorem,
which is intimately connected with a formulation of the
second law [3,5]. This theorem can be generalized in our
case, at least for times t ¿ m�g, where the momenta al-
ready came to the local equilibrium, and the relevant vari-
able is x. The H function is defined as [3,5]

H �
Z

dx W1�x, t� ln
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where W1,2�x, t� are solutions of Eq. (16) corresponding to

different initial conditions. Calculating �H from Eq. (16),
one performs partial integrations to obtain
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Since D�x, t� . 0, H is a monotonically decreasing func-
tion, and attains its minimum in the stationary state [5].
On the other hand, H is limited from below by zero,
so we conclude that all solutions of the Fokker-Planck
equation (16) converge with time to the stationary solu-
tion. Let us define the currentless state Ws�x, t�, obtained
from Ws�x� by the substitution D�x� ! D�x, t�. Starting
from Eq. (22), one can show that the entropy of the coor-
dinate sector obeys

dSx

dt
� 2

Z
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Here the quantity
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can be interpreted as the flux of entropy. Indeed, J�x� is the
probability current and 2bV 0

e represents a force divided
by temperature. The second term in (23),
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is the entropy production during the relaxation. This quan-
tity is strictly positive out of the steady state, and becomes
zero in the long-time limit. In the classical case, Eq. (23)
leads to the well-known relation TdSx � dQ 1 TdiSx ,
since Ws�x, t� becomes time independent and coincides
with the Gibbs distribution. Although, in the general quan-
tum case this relation is broken, it can still be recovered in
the harmonic case. Applying Eq. (23), we find TpdSp 1

TxdSx � dU 1 dP, where Tp�t� � Dpp�t� and Tx�t� �
D�t� are the time-dependent effective temperatures, and
dP � TxdiSx $ 0 is the energy dissipated during the
relaxation.

Returning to the case of varying a system parameter, we
are now interested in the first nonadiabatic correction to
the stationary distribution, arising when the time of the
variation is large, but finite. Since the dynamics is in
1801
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the overdamped regime, the main correction comes from
the deviation of W�x, t� [and not the full W�p, x, t�] from
its stationary form. The variation starts at t � ti (the
particle already reached its stationary state), and ends at
t � tf . We shall assume a “smooth” start of the variation,
i.e., �a�ti� � 0. It can be checked directly from Eq. (16)
that W now reads as follows for small �a:

W�x, t� � Ws�x, a�
∑
1 1
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where a � a�t� and the average is taken with respect to
Ws�x, a�. The work finally becomes dW � dWad 1

dP, with
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In the Gibbsian case at large T , where Ve ! V , one re-
covers Wad � U 2 TS and the known result for dP $ 0
[3,16]. We stress that dP is always relevant for cyclic pro-
cesses a�ti� � a�tf �, where DWad � 0.

For the oscillator with V �x� � ax2�2 1 gx4�12 with
small g, the anharmonicity is displayed at the scale L �p

a�g ¿ 	jxj
. We shall now investigate the nonadiabatic
correction to the work caused by temporal variation of L.
For T ! 0 we additionally take the limit of large g in
Eqs. (19) and (20), which yields
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Although ≠LV �x� � 2�a��6L3��x4 is negative, ≠LVe�x� �
1�gpT��6h̄L3 lng��x4 is positive. Therefore dP is neg-
ative. For small g, we obtain from Eqs. (28) and (29),
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The possibility to extract this energy from the bath is due
to its nonequilibrium state, which is ensured by the energy
(3) supplied in the switching.

In conclusion, we have considered a Brownian quantum
particle strongly interacting with a quantum thermal bath.
The non-Gibbsian statistics of the particle is completely
described by Fokker-Planck equations [(13) and (16)]. An
H theorem is formulated in Eqs. (22) and (23). For the
harmonic potential, generalized Gibbsian relations can be
constructed in terms of effective temperatures (8) and (9),
as happens also in glassy systems [10]. Two formulations
of the second law, namely, the Clausius inequality and the
impossibility to extract work during cyclical variations, can
be apparently violated at low temperatures. One could thus
speak of a “perpetuum mobile of the second kind.” We
1802
should mention, however, that the number of cycles can be
large, but not arbitrarily large. As a result, the total amount
of extractable work is modest [17]. In any case, the system
energy can never be less than its ground state energy.

These violations of the second law are due to quantum
coherence in the presence of the slightly off-equilibrium
nature of the bath. This coherence is reflected in the quan-
tum noise correlation time max�1�G, h̄�T�, which exceeds
the damping time 1�G for T , h̄G�kB. We call them ap-
parent violations, since, the standard requirements for a
thermal bath not being fulfilled, thermodynamics just does
not apply. Let us stress that also in the classical regime the
harmonic oscillator bath is not in full equilibrium, but there
noise and damping have the same time scale 1�G, allowing
the Gibbs distribution to save the day and thermodynamics
to apply. Our results thus make clear that the characteri-
zation of the heat bath should be given with care. If it
thermalizes on the observation time, standard thermody-
namics always applies. Otherwise, thermodynamics need
not have a say.

Let us close by noting that in the harmonic case the
unequal effective temperatures do not cause heat currents
that equalize them. This situation is reminiscent of the
classical paradox that atoms should radiate, but, being in
the quantum regime, they do not. The finding that work
can be extracted from quantum baths may have a wide
scope of applications such as cooling.
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