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Bose-Einstein Condensation in Trapped Dipolar Gases

L. Santos,1 G. V. Shlyapnikov,1,2,3 P. Zoller,1,4 and M. Lewenstein1

1Institut für Theoretische Physik, Universität Hannover, D-30167 Hannover, Germany
2FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

3Russian Research Center Kurchatov Institute, Kurchatov Square, 123182 Moscow, Russia
4Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria

(Received 1 May 2000)

We discuss Bose-Einstein condensation in a trapped gas of bosonic particles interacting dominantly
via dipole-dipole forces. We find that in this case the mean-field interparticle interaction and, hence, the
stability diagram are governed by the trapping geometry. Possible physical realizations include ultracold
heteronuclear molecules, or atoms with laser induced electric dipole moments.

PACS numbers: 03.75.Fi, 05.30.Jp
Bose-Einstein condensation (BEC) of trapped atomic
gases [1,2] offers unique possibilities to highlight a general
physical problem of how the nature and stability of a Bose-
condensed state is influenced by the character of interpar-
ticle interaction. In this respect, especially interesting are
ultracold gases with attractive interaction between particles
(scattering length a , 0). As known [3], spatially homo-
geneous condensates with a , 0 are absolutely unstable
with regard to local collapses. The presence of the trapping
field changes the situation drastically. This has been re-
vealed in the successful experiments at Rice [2] on BEC of
magnetically trapped atomic 7Li (a � 214 Å). As found
in theoretical studies [3], if the number of condensed par-
ticles is sufficiently small (of order 103 in the Rice experi-
ments) and the spacing between the trap levels exceeds the
mean-field interparticle interaction n0jgj (n0 is the conden-
sate density, g � 4p h̄2a�M, where M is the atom mass),
there will be a metastable Bose-condensed state. In other
words, the condensate is stabilized if the negative pres-
sure caused by the interparticle attraction is compensated
by the quantum pressure imposed by the trapping poten-
tial. In some sense, this is similar to the gas-liquid phase
transition in a classical system with interparticle attraction:
The gas phase is stable as long as the thermal pressure ex-
ceeds the (negative) interaction-induced pressure (see [4]).

The recent success in creating ultracold molecular
clouds [5–7] opens fascinating prospects to achieve
quantum degeneracy in trapped gases of heteronuclear
molecules. In a sufficiently high electric field “freezing”
their rotational motion, these molecules interact via the
dipole-dipole forces. This interaction is long range and
anisotropic (partially attractive), and there is a nontrivial
question of achieving BEC and manipulating condensates
in trapped gases of dipolar particles.

Thus far, only the interaction between (small) atomic
dipoles has been included in the discussion of the con-
densate properties. Góral et al. [8] considered the effect
of magnetic dipole interaction in a trapped spin-polarized
atomic condensate. Magnetic dipoles are small (of the
order the Bohr magneton mB), and even for atoms like
chromium (6mB) the magnetic interactions are dominated
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by the van der Waals forces. Nevertheless, for a rela-
tively small scattering length a the condensate wave func-
tion may develop novel structures reflecting the interplay
between the two types of forces. These effects can be
amplified by modifying a, which hopefully will soon be-
come a standard technique [9], and could eventually ap-
pear in other systems, such as polar molecules, as pointed
out in Ref. [8]. Similar effects have been discussed by Yi
and You [10] for ground-state atoms with electric dipole
moments induced by a high dc field (of the order of
106 V�cm). These authors have demonstrated the valid-
ity of the Gross-Pitaevskii equation (GPE) for this system,
constructed the corresponding pseudopotential, and deter-
mined an effective scattering length.

In this Letter we discuss BEC in a trapped gas of dipolar
particles, where the interparticle interaction is dominated
by the dipole-dipole forces. Possible realizations include
the (electrically polarized) gas of heteronuclear molecules
as they have large permanent electric dipoles. We also pro-
pose a method of creating a polarized atomic dipolar gas
by laser coupling of the atomic ground state to an electri-
cally polarized Rydberg state. We assume that the inter-
particle interaction is not obscured by short-range forces
and by the shape resonances of the dipole-dipole potential
(cf. [10]). Then, similar to the condensates with a , 0,
dipolar condensates are unstable in the spatially homo-
geneous case, and can be stabilized by confinement in a
trap. However, we find a striking difference from common
atomic condensates: In the BEC regime the sign and the
value of the dipole-dipole interaction energy in the sys-
tem is strongly influenced by the trapping geometry and,
hence, the stability diagram depends crucially on the trap
anisotropy. This offers new possibilities for controlling and
engineering macroscopic quantum states. For dipoles ori-
ented along the axis of a cylindrical trap we have found a
critical value l� � 0.4 for the square root of the ratio of the
radial to axial frequency l � �vr�vz�1�2: Pancake traps
with l , l� mostly provide a repulsive mean field of the
dipole-dipole interaction, and thus the dipolar condensate
in these traps will be stable at any number of particles N .
For l . l� the stability requires N , Nc, where the critical
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value Nc at which the collapse occurs is determined by the
condition that (on average) the mean-field interaction is at-
tractive and close to vr .

We consider a condensate of dipolar particles in a
cylindrical harmonic trap. All dipoles are assumed
to be oriented along the trap axis. Accordingly, the
dipole-dipole interaction potential between two dipoles
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is given by Vd�R� � �d2�R3� �1 2 3 cos2u�, where
d is the dipole moment, R the distance between the
dipoles, and u the angle between the vector R and the
dipole axis. The potential Vd�R� is long range, and one
cannot use the pseudopotential approach for the mean
field. Similar to [8,10], we describe the dynamics of
the condensate wave function c�r, t� by using the time-
dependent GPE
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Here c�r, t� is normalized to the total number of con-
densate particles N . The third term in the right-hand
side corresponds to the mean field of short-range (van-
der-Waals– like) forces, and the last term to the mean
field of the dipole-dipole interaction. We omit the term
gjc�r, t�j2c�r, t�, assuming that the interparticle interac-
tion is dominated by the dipole-dipole forces, and the sys-
tem is away from the shape resonances of Vd�R� (d2 ¿
jgj � 4p h̄2jaj�M).

The wave function of the relative motion of a pair of
dipoles is influenced by the dipole-dipole interaction at
interparticle distances jr 2 r0 j & r� � Md2�h̄2. This in-
fluence is ignored in the dipole-dipole term of Eq. (1), as
the main contribution to the integral comes from distances
jr 2 r0 j of order the spatial size of the condensate, which
we assume to be much larger than r�.

Away from the shape resonances, the dipolar conden-
sate is unstable in the spatially homogeneous case. For all
dipoles parallel to each other, by using the Bogolyubov
method one easily finds the anisotropic dispersion law
for elementary excitations: ´�k� � �E2

k 1 8pEkn0 3

d2�cos2uk 2 1�3��1�2, where Ek � h̄2k2�2M, n0 is the
condensate density, and uk the angle between the excita-
tion momentum k and the direction of the dipoles. The
instability is clearly seen from the fact that at small k and
cos2uk , 1�3 one has imaginary excitation energies ´.

To understand the influence of the trapping field on the
dipolar condensate, we have simulated Eq. (1) for various
values of the number of particles N , dipole moment d, and
the trap aspect ratio l. By evolving Eq. (1) in imaginary
time, we have found the condition under which the con-
densate is stabilized by the trapping field and investigated
static properties of this Bose-condensed state.

For the stationary condensate the wave function
c�r, t� � c0�r� exp�2imt�h̄�, where m is the chemical
potential, and the left-hand side of Eq. (1) becomes
mc0�r�. The important energy scales of the problem are
the trap frequencies vz , vr , and the dipole-dipole interac-
tion energy per particle, defined as V � �1�N�

R
Vd�r 2

r0�c2
0 �r�c2

0 �r0� dr dr0. Accordingly, the quantity V�h̄vr ,
the aspect ratio of the trap l, and the (renormalized)
number of particles s � Nr��amax [with amax �
�h̄�2Mvmin�1�2 being the maximal oscillator length of the
trap] form the necessary set of parameters allowing us to
determine the chemical potential and give a full descrip-
tion of the behavior of a trapped dipolar condensate.
We have found that the dipolar condensate is stable ei-
ther at V . 0, or at V , 0 with jV j , h̄vr . This re-
quires N , Nc, where the critical number Nc depends on
the trap aspect ratio l. The calculated dependence Nc�l�
is presented in Fig. 1 and clearly indicates the presence of
a critical point l� � 0.4. In pancake traps with l , l� the
condensate is stable at any N , because V always remains
positive (see Fig. 2). For small N the shape of the cloud is
Gaussian in all directions. With increasing N , the quantity
V increases and the cloud first becomes Thomas-Fermi in
the radial direction and then, for a very large N , also ax-
ially. The ratio of the axial to radial size of the cloud,
L � Lz�Lr , continuously decreases with increasing num-
ber of particles and reaches a limiting value at N ! ` (see
Fig. 3). In this respect, for a very large N we have a pan-
cake Thomas-Fermi condensate.

For l $ 1 the mean-field dipole-dipole interaction is al-
ways attractive. The quantity jV j increases with N and
the shape of the cloud changes (see Figs. 2 and 3). In
spherical traps the cloud becomes more elongated in the
axial direction and near N � Nc the shape of the cloud is
close to Gaussian, with the aspect ratio L � 2.1. In cigar-
shaped traps (l ¿ 1) especially interesting is the regime
where h̄vz ø jV j ø h̄vr . In this case the radial shape
of the cloud remains the same Gaussian as in a noninter-
acting gas, but the axial behavior of the condensate will be
governed by the dipole-dipole interaction which acquires a
quasi-1D character. Thus, one has a (quasi)1D gas with at-
tractive interparticle interaction and is dealing with a stable

FIG. 1. Critical value sc � Ncr��amax and (in the inset) the
corresponding condensate aspect ratio Lc versus l.
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FIG. 2. Dipole-dipole interaction energy V versus s for
(a) l � 10, (b) l � 1, and (c) l � 0.1.

(bright) solitonlike condensate where attractive forces are
compensated by the kinetic energy [11]. With increasing
N , Lz decreases. Near N � Nc, where jV j is close to h̄vr ,
the axial shape of the cloud also becomes Gaussian and
the aspect ratio takes the value L � 3.0. For l� # l , 1,
the dipole-dipole interaction energy is positive for a small
number of particles and increases with N . The quantity V
reaches its maximum, and the further increase in N reduces
V and makes the cloud less pancake. At the critical point
N � Nc the shape of the cloud is close to Gaussian and
the aspect ratio L , 3.0, tending to 1 as l ! l�.

To gain insight into the nature of the stability of dipolar
condensates in pancake traps we performed a variational
ansatz assuming a Gaussian shape of the cloud (cf. [10]):

c0 � N1�2�2p�23�4�L2
rLz�21�2e2r2�4L2

r e2z2�4L2
z . (2)

Minimizing the energy functional H of the system, we
found the aspect ratio of the cloud L and established
that it decreases with increasing s for l , l�, and in-
creases otherwise. The point l� can be estimated by requir-
ing dL�dsjs�0 � 0, which provides l� � 0.41 in good
agreement with the numerical calculation.

At the critical point N � Nc, we observe that the local
minimum of H becomes a saddle point. Hence, one has

FIG. 3. Condensate aspect ratio L versus s for (a) l � 10,
(b) l � 1, and (in the inset) (c) l � 0.1. Curves (a) and (b) end
when the system enters the unstable regime.
�≠2H�≠L2
z� �≠2H�≠L2

r� 2 �≠2H�≠Lz≠Lr�2 � 0, in addi-
tion to ≠H�≠Lz � ≠H�≠Lr � 0. This gives the relation
between L and l at the criticality,
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where B�L� � 2 1 L2 2 3L arctan�
p

1 2 L2 �L��p
1 2 L2. Similarly, one can find the corresponding

expressions for s, Lz , and Lr as a function of vz,r .
The result of Eq. (3) differs by less than 15% from our
numerical calculations.

We have also analyzed the dynamics of the instability,
evolving (in real time) the initially stable condensate by a
slow increase of s. In our approach based on the GPE,
similar to the case of a , 0 (see [12]), the dipolar con-
densate collapses to a point on a finite time scale. The
ratio L increases moderately in the course of the collapse.
The results for the spherical trap are presented in Fig. 4.
The collapse in cigar-shaped traps occurs in a similar way,
since the initial shape of the collapsing dipolar cloud is al-
most the same as in spherical traps (see Fig. 1).

As we see, the ground state of a dipolar gas exhibits
a very rich behavior and one finds various BEC regimes.
In order to electrically polarize an ultracold cloud of het-
eronuclear molecules, and thus create a molecular dipolar
gas, one should have the electric field which provides the
Stark potential dE greatly exceeding the spacing between
the lowest rotational levels of the molecule. Then the ro-
tational motion of the molecules will be “frozen” and their
dipole moments will be oriented along the direction of the
field. For most of the diatomic molecules the rotational
level spacing is in the range from 0.1 to 1 K, and hence
the required electric field is E � 103 V�cm.

Molecular BEC is not yet achieved experimentally. We
thus propose a method of inducing electric dipoles, which
can be used in atomic condensates. The idea is to apply

FIG. 4. Condensate widths (in units of az) in the dipole direc-
tion (solid line) and perpendicular to the dipole (dashed line),
for the collapse in a spherical trap of frequency v [s�0� �
11.5 , sc � 11.8, and s�t� � 11.5 1 0.8vt].
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a constant electric field and to optically admix the per-
manent dipole moment of a low-lying Rydberg state to the
atomic ground state. Rydberg states of hydrogen and alkali
atoms exhibit a linear Stark effect [13]: an electric field
Es splits the manifold of Rydberg states with given prin-
cipal quantum number n and magnetic quantum number
m into 2�n 2 jmj 2 1� Stark states. The outermost Stark
states have permanent dipole moments dR � n2eaB (with
aB the Bohr radius), and there will be a related dipole-
dipole force between the atoms.

This dipole-dipole interaction can be controlled with a
laser [14]. This is achieved either by admixing the per-
manent dipole moment of the Stark states to the atomic
ground state with an off-resonant cw laser, or by a stro-
boscopic excitation with a sequence of laser pulses. The
pulses tuned to the lowest Stark state of a given Rydberg
manifold should be separated by a time T , have duration
2Dt ø T , and have an area 2p [15]. The field Es and
the “dressing” light have to be chosen such that they do
not couple the selected lowest Stark state to other states,
and the spacing (�neaBEs) between the adjacent Stark
states should greatly exceed the mean-field dipole-dipole
interaction in order to avoid the interaction-induced cou-
pling. Stroboscopic excitation “dresses” the atomic in-
ternal states, so that each atom acquires a time averaged
dipole moment of the order of ds � n2eaBf, oriented in
the direction of Es. Even though f � Dt�T is assumed
to be small, the induced dipole can be rather large for
n ¿ 1. For Dt � 1 ns, T � 10 ms, and n � 20, we ob-
tain ds � 0.1 D. In the limit f ! 0, n2f � const, the
resulting time dependent Hamiltonian can be replaced by
its time average, leading to Eq. (1) with d � ds. A char-
acteristic time scale in Eq. (1) is of order the inverse trap
frequency v21. Hence, in our case the dynamics of the
system is described by Eq. (1) with d � ds, if the con-
dition Dt, T ø v21 is satisfied. This has been tested
numerically for Dt�T � 1024: We reproduced our previ-
ous results of the static GPE by solving explicitly Eq. (1)
for the stroboscopic dressing of atoms, i.e., by setting
d � ds�f in the time intervals Dt and d � 0 otherwise.

Aside from inducing permanent electric dipoles, the
stroboscopic dressing of atoms will somewhat modify
the trapping potential and the scattering length related to
the van der Waals interatomic forces. The corresponding
corrections will be proportional to the small parameter f.
There will also be losses due to spontaneous emission and
blackbody radiation [14]. The rates of these processes
become comparable with each other for n � 20 [13,14],
where the corresponding decay time is of order 20 ms. In
our scheme the lifetime will be thus �20 ms�f � 0.2 s.

The laser resonant with a bare transition frequency
dresses only the atoms that are sufficiently separated
from their neighbors, since otherwise the dipole-dipole
interaction shifts atomic resonances. Atomic pairs are
“shielded” [16] and not dressed at interatomic distances
smaller than R�, where the latter follows from the equation
h̄V � d2

R�R3
� , with V � p�Dt being the Rabi frequency
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associated with the dressing laser. For n � 20 and
Dt � 1 ns we have V � 500 MHz and R� � 0.7 mm.

The most dangerous “underwater stone” concerns in-
elastic decay processes. Fortunately, the “shielding” can
suppress Penning ionization: a strong suppression is ex-
pected if atoms practically do not move during the short
time Dt, and the distances at which the ionization occurs
(�n2aB) are significantly smaller than R�. For the parame-
ters considered above this should be the case. The dipole-
dipole interaction also induces the change of the effective
Rabi frequency, and therefore the 2p pulse condition is
not strictly satisfied. Hence, a fraction of atoms remains
in the Rydberg state between the stroboscopic pulses and
decays due to spontaneous emission. This fraction can be
reduced by decreasing the quantity ñd2Dt, where ñ is the
gas density. A detailed analysis of inelastic processes in
the conditions of stroboscopic dressing of atoms requires
a separate investigation.
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