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Supercriticality and Transmission Resonances in the Dirac Equation
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It is shown that a Dirac particle of mass m and arbitrarily small momentum will tunnel without
reflection through a potential barrier V = U,(x) of finite range provided that the potential well V =
—U.(x) supports a bound state of energy £ = —m. This is called a supercritical potential well.
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It is now over 70 years since the Dirac equation was writ-
ten down. Yet new results have been discussed in recent
years, even in the relatively simple cases of one [1] and
two spatial dimensions [2] as well as in three dimensions
[3-6]. In this Letter, we generalize a well known theo-
rem of scattering off a one-dimensional potential well in
the Schrodinger equation to the Dirac equation. This is not
difficult, but the theorem has an unexpected twist. Since
the Dirac equation covers antiparticle scattering as well as
particle scattering, the generalization gives two distinct re-
sults. One of these results implies a remarkable property of
tunneling through a potential barrier in the Dirac equation
which is related to the result on barrier penetration found
by Klein [7] and is now called the Klein paradox.

We begin by considering the scattering off a class of
one-dimensional potential wells V (x) where V(x) = 0 for
x| = @ and V(x) = —U(x) = 0 for |x| < a where the
piecewise continuous function U(x) = 0. The potential is
also taken to be even so that V(—x) = V(x). We first seek
to generalize to the Dirac equation the nonrelativistic re-
sult that the reflection coefficient R(k) for scattering off
the potential well V(x) = —Up(x) which supports a zero
energy resonance satisfies R(0) = 0, where k is the mo-
mentum of the particle. This theorem was known to Schiff
[8] and Bohm [9] but a proof was published only relatively
recently by Senn [10] and Sassoli de Bianchi [11]. The
situation where R(k) = 0 and the transmission coefficient
T(k) = 1 is called a transmission resonance [9]. In non-
relativistic systems a zero energy resonance (or half-bound
state) [12] is the nontrivial limit where a bound state just
emerges from the continuum, for example, when a square
well potential is just strong enough to support a second
bound state.

Following an earlier paper [13] we take the gamma ma-
trices y, and ‘g to be the Pauli matrices o, and o, respec-
tively. Then the Dirac equation for scattering of a particle
of energy E and momentum k by the potential V(x) can
be written as the coupled equations

i +[E—-V(ix) +m]g=0, (1a)
0x
98 _[E - V(x) - mlf =0, (1b)
0x
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where the Dirac spinor ¢ = (é)

Equations (1) have simple solutions as x — o where
V = 0. In particular, the analog of a zero energy resonance
in the Schrodinger equation is a zero momentum resonance
in the Dirac equation [2] where a particle of zero momen-

tum has £ = m or an antiparticle has £ = —m. (The
antiparticle is described by the hole wave function corre-
sponding to the absence of the state with E = —m.) It is

easy to see that the solution of Eq. (1) for E = mand V =
0 appropriately normalized is ¢ = (26") while the solution
for E= —mand V = 01is () ). As in Ref. [13] we can
now write down the solutions of Eq. (1) for a particle of
momentum k as x — * to obtain ¢ = (“%")e’** while
an antiparticle of momentum k will have ¢ = (,*;)e 7~
We now set up the usual formalism for particle scattering
by the potential V (x) in the Dirac equation. We take the par-
ticle as incident from the left, so the amplitude for reflec-
tion r(k) is defined through the spinor ¢(x) as x — —oe:

Wix) = (Efl.km)e'“ - r(k)(E jkm)e""“, @)

while as x — ©

o) = ) (E et G
In the Dirac equation [14] as for the Schrodinger equa-
tion with symmetric potentials [11], unitarity implies that

lrl> + 12> =1;  Im(*r) =0, 4)

so R + T = 1 where the reflection and transmission co-
efficients are given by R = |r|?, T = [t]°.

Since the potentials we consider are even, parity is con-
served. In our two-component approach, the transforma-
tion of a wave function under x — —x is given [13] by

P'(x,1) = o h(—x,1). (5)

It follows that an even wave function ¢/ has an even top com-

ponent f and an odd bottom component g. Similarly, for

an odd wave function ¢, f will be odd and g will be even.

We first consider an even bound state in the potential

V(x). As x — %o, its unnormalized wave function will
be of the form

P(x) = (m + E)e” X — —o, (6a)

- K
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Yix) = (’" ’ E)e x—o, (6
where E2 = m?> — k2. We require the potential well V =
—Up(x) to just bind this bound state with arbitrarily small
«. If this is the case, then the limit k — 0 exists, and ¢ (x)
becomes a continuum wave function since it is no longer
square integrable.

We can now compare Egs. (6) with Egs. (2) and (3)
in the limit k — 0, x — 0. We obtain 2m[1 + r(0)] =
2mt(0) or

1+ r(0)=10) #0. @)

We have written #(0) # 0 since otherwise #(x) would van-
ish in the limit kK — 0, k — 0, and we would not be con-
sidering a zero momentum resonance. [In Ref. [15] we
adopt a more general approach to obtain the results of this
Letter, thereby avoiding the use of #(0) # 0.]

The theorem now follows easily just as it does in the
Schrédinger case [11]. Combining Eq. (7) with the unitar-
ity condition Im(r*¢) = 0 of Eq. (4), we get Im(r*) = 0
so that 7(0) and #(0) are real. From |r|*> + [#|> = 1 we
obtain

2 +2r + 1 =1 (8)

so that 7(0) = 0 or r(0) = —1. Since #(0) # 0, we obtain
the result #(0) = 0, and so in terms of the reflection and
transmission coefficients

R(0) = 0, TO)=1. )

If instead we had considered an odd bound state, an ad-
ditional minus sign must be introduced into either Eq. (6a)
or Eq. (6b). Equation (7) must be modifiedto 1 + r(0) =
—1(0) and the subsequent analysis and conclusions remain
valid. Hence, just as in the Schrodinger equation, the scat-
tering of a particle in the Dirac equation off a potential
well V. = —Up(x) which “binds” a zero momentum reso-
nance corresponds to a transmission resonance with zero
reflection.

We now increase the strength of the potential well from
Up(x) to U.(x) sothat V = —U,(x) supports a bound state
of energy E = —m. This is called a supercritical poten-
tial and is associated with spontaneous positron produc-
tion [16,17]. We can redo the analysis exactly as before
by defining amplitudes r—, ¢_ for the reflection and trans-
mission of an antiparticle of momentum k incident from
the left on a potential well V(x): so in place of Eq. (2) we
have as x — —x

— ik —ikx —ik ) ikx
¥ (x) (m - E)e + r_(k)(m g ) (10)
while as x — % we have

Yix) = u(k)(m * E)e‘“‘x. (11)

As before, unitarity gives
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lr—|?> + |- =1, Im(r*z-) =0, (12)

and the near-supercritical even bound state for x — *®is
now

P(x) = <m__KE>e” x — —o, (13a)

P(x) = —<me>e‘“ x— oo, (13b)

Note again that for the odd bound state we must drop the
minus sign in Eq. (13b).

Repeating the analysis of Eqgs. (7)-(9) we find in the
limit k — 0, k — 0 when the antiparticle is incident on
the potential well V. = —U.(x) with arbitrarily small mo-
mentum that

R_(0) =0, T-(0) =1, (14)

where R_ = |r_|?, T- = |t_|*

So we see that in the Dirac equation there are two
analogs of the Schrodinger result: one for zero momen-
tum particles incident on a potential well which supports
a zero momentum resonance and one for zero momentum
antiparticles incident on a supercritical potential well.

We now can obtain our main result. The Dirac equation
(1) is invariant under charge conjugation, that is to say
under the transformation

E— —FE, V—- -V, f—sg g— f. (15)

From Eq. (14) we know that an antiparticle of energy
E = —+m? + k? incident on the supercritical potential
well V. (x) = —U,.(x) will satisfy T_(0) = 1; thatis to say
at arbitrarily small momentum it will have a vanishingly
small reflection coefficient. Equation (14) then shows that
if we replace the antiparticle of energy E = —+/m?2 + k2
incident on the supercritical potential well by a particle of
energy E = +/m?2 + k2 incident on the corresponding po-
tential barrier V(x) = +U.(x) the particle will still have
a transmission resonance at zero momentum, even though
now the potential well has been replaced by a potential
barrier.We thus obtain the theorem that where an even po-
tential well of finite range is strong enough to contain a
supercritical state, then a particle of arbitrarily small mo-
mentum will be able to tunnel right through the poten-
tial barrier created by inverting the well without reflection.
This result was noticed a few years ago for the particu-
lar case of square barriers [13], and one of us (P.K.) has
shown numerically that it was also true for Gaussian and
Saxon-Woods potential barriers [18]. In the Appendix we
show the behavior of the upper and lower components of
the wave function for particle scattering at zero momentum
by a square and Gaussian barrier when the corresponding
potential wells are supercritical.

Conclusions.—In his original work Klein [7] discov-
ered that a Dirac particle could tunnel through an arbi-
trarily high potential. The generic phenomenon whereby
fermions can tunnel through barriers without exponential
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suppression we have called “Klein tunneling” [19]. The
result of this Letter shows that Klein tunneling is a general
feature of the Dirac equation: any potential well strong
enough to support a supercritical state when inverted be-
comes a potential barrier which a fermion of arbitrarily low
momentum can tunnel through without reflection. We do
not claim here that any transmission resonance at zero mo-
mentum must correspond to supercriticality, only that su-
percriticality leads to a transmission resonance through a
potential barrier at zero momentum. In another paper [15]
we shall consider the question of the conditions on a po-
tential for it to possess a zero momentum transmission res-
onance more generally. In three dimensions Hall and one
of us (N. D.) [20] have recently demonstrated that maximal
Klein tunneling is also associated with supercriticality.

The potential step that Klein considered has pathologi-
cal properties [19]. Nevertheless, our result confirms that
according to the Dirac equation a particle of low momen-
tum can tunnel through an arbitrarily high smooth poten-
tial of finite range. The reason is straightforward: hole
states can propagate under the potential barrier. In terms of
the particle kinetic energy T under the barrier T = E —
V —m=—m — \m? + g2, where g is the momentum
of the hole, so if T = —2m, hole states can propagate
without exponential suppression. 7 = —2m thus corre-
sponds to penetrating under the barrier to distances |x| <
[xx| where V(xx) = E + m = 2m [20].

Appendix.— We illustrate the result above for the special
cases of (i) a square barrier and (ii) a Gaussian barrier.
First consider the square well potential V- = —U(x) where
U(x) = U for |x|] < a and U(x) = 0 for |x|] > a. Then
an unnormalized even wave function inside the well [13]
has the form

(x) = ((E + U + m)cospx) Ikl =a. (16)

p sinpx
where the internal momentum p is given by (E + U)? =
m? + p2. For supercriticality where E = —m we re-

quire the phase condition pa = N7 /2 where N is an
integer [13]. The first supercritical state is thus given by
p = p. = 7/2a and correspondingly the critical poten-
tial is V(x) = —-U., |x|=<a, where U.=m +
Jm? + 72/4a2. At supercriticality the wave function is
thus given by

W(x) = (2?” ) X< —a, (172)
_ b cos(mx/2a) -

P(x) = Zm( sin(mrx /2a) >, x| =a, (@17b)

W(x) = —<2?n ) x>a, (17¢)

where b = 2aU, /.

Now consider a particle of arbitrarily small momen-
tum incident on the square barrier V(x) = U,, |x| < a;
V(x) = 0, |x] > a. Equation (15) shows that the wave

FIG. 1. The zero momentum wave function for the square bar-
rier V. = U.(x), depicted by the heavy line. The solid line is the
upper component, and the dashed line is the lower component.

function is obtained by interchanging the top and bottom
components of Eq. (17), thereby giving the transmission
resonance

P(x) = <2(’)" ) x<-—a, (18a)
_ sin(7x/2a) -

Yx) = 2m(bcos(77x/2a)>’ lx| = a, (18b)

P(x) = —(2(’)” ) x>a, (18¢)

and the components of the wave function are shown in
Fig. 1.

One of us (P. K.) has also solved the Dirac equation nu-
merically for a Gaussian potential well and barrier where
U(x) = Uexp(—x?/a?) [18]. In Fig. 2 we show the com-
ponents of the wave function for a particle of arbitrar-
ily small momentum incident on a supercritical Gaussian
barrier where U = U, = 3.26m for ma = 1 (cf. U, =
m + m? + 72/4a* = 2.86m for ma = 1 for a square
barrier). Again there is a transmission resonance demon-
strating complete penetration of the barrier.

While the wave functions in this case have a similar form
to those for the square barrier, note the two turning points
which occur in the top component of the Gaussian wave
function. These correspond to the points *xx where
V(xg) = E + m = 2m at zero momentum. Hole states
can propagate under the potential without exponential

FIG. 2. The zero momentum wave function for the Gaussian
barrier V = U, exp(—m?x?), depicted by the heavy line. The
solid line is the upper component, and the dashed line is the
lower component.
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suppression from —xg to +xg thus demonstrating Klein
tunneling. Note also that the condition for hole states to
propagate under a potential of finite range is V > 2m
which will in general not be sufficient for supercriticality
(we have seen for a square barrier of range a with ma = 1
that V. = 2.86m). So Klein tunneling should exist even
for subcritical potentials as was pointed out by Dosch
et al. [21].
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