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One- and Two-Particle Microrheology
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We study the dynamics of rigid spheres embedded in viscoelastic media and address two questions
of importance to microrheology. First, we calculate the complete response to an external force of a
single bead in a homogeneous elastic network viscously coupled to an incompressible fluid. From this
response function we find the frequency range where the standard assumptions of microrheology are
valid. Second, we study fluctuations when embedded spheres perturb the media around them and show
that mutual fluctuations of two separated spheres provide a more accurate determination of the complex
shear modulus than do the fluctuations of a single sphere.

PACS numbers: 83.50.Fc, 83.10.Lk, 83.10.Nn
Microrheology is an important experimental probe of
the viscoelastic properties of soft materials [1]. Unlike
more traditional macrorheology, in which a sample is sub-
jected to an externally imposed uniform shear strain, mi-
crorheology relies on the Brownian fluctuations of the
micron-sized beads dispersed in the sample to assess the
viscoelastic response function (complex shear modulus),
G�v�. The principal advantages of this technique are
that it can be used for the detailed study of materials that
cannot be produced in bulk quantities and that it can be
used to probe the local properties of rheologically inho-
mogeneous materials. Because of these two strengths, mi-
crorheology promises to open a new window on cellular
biology by facilitating the study of the rheological proper-
ties of intracellular structures in living cells. In addition,
this technique is currently being used to study various soft
biomaterials [2].

In a typical microrheology experiment, the time-
dependent position correlation function of individual
probe particles is measured either by light scattering [2] or
by direct real-space imaging [3]. This correlation function
provides a complete description (via the fluctuation-
dissipation theorem) of the frequency-dependent response
of the probe particles to an external force. If inertial effects
are ignored, the rheological properties of a Newtonian
fluid are completely determined by a single quantity, its
viscosity h. The displacement of a spherical particle,
u�v�, of radius a in response to a force f�v� at frequency
v in such a fluid is given by the standard Stokes-Einstein
relation,

u�v� �
f�v�

6paG�v�
, (1)

where G�v� � 2ivh is the complex shear modulus. A
natural hypothesis [1] is that this relation can be gener-
alized to rheologically complex materials in which G�v�,
the complex shear modulus, has both storage (real) and
loss (imaginary) components. We will refer to this exten-
sion of Eq. (1) as the generalized Stokes-Einstein relation
(GSER).
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In this Letter we address two basic questions regarding
the interpretation of microrheological data: (i) In a ho-
mogeneous viscoelastic medium does the GSER provide
the correct response function to an applied force? (ii) If
the introduction of the probe particles perturbs the local
rheological properties of the medium, how does one ex-
tract the unperturbed, bulk rheological properties from the
data? Recent experiments suggest that, at least in certain
systems, a discrepancy exists between the macrorheologi-
cal and microrheological measurement of the shear modu-
lus [3], making this question one of current interest.

To address the first of these questions, we use a model
viscoelastic medium consisting of an elastic network that
is viscously coupled to a fluid in which the network is
embedded [2,4]. In the second half of this Letter, we
approach the problem of rheological inhomogeneities and
explicitly show that interparticle position correlations are
insensitive to the local particle environment and, therefore,
provide a more reliable probe of the properties of the bulk
material than do single-particle fluctuations, as proposed
in Ref. [3].

Our model viscoelastic medium consists of an elastic
network, characterized by a displacement variable u, that
is viscously coupled via a friction coefficient G to an in-
compressible Newtonian fluid characterized by a velocity
field v . In the absence of viscous coupling, u obeys the
standard equation for an isotropic, elastic, compressible
medium with Lamé coefficients l, m, and v obeys the
incompressible Navier-Stokes equation with viscosity h.
With friction included, the equations for u and v [4] are

rü 2 m=2u 2 �l 1 m�=�= ? u� � 2G� �u 2 v� 1 fu ,
(2)

rF �v 2 h=2v 1 =P � G� �u 2 v� 1 fv , (3)

= ? v � 0 , (4)

where P is the pressure and fu and fv are, respectively, the
force densities exerted on u and v by the embedded beads.
The friction coefficient G is estimated by considering a
uniform displacement of the network relative to the fluid
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at constant relative velocity v . The friction force per unit
volume, Gv , is equal to the friction force, hjv , on a strand
of the network of length equal to the mesh size j divided
by j3, the volume per strand. The result is G � h�j2.

Our goal is to calculate the frequency-dependent dis-
placement compliance a�v� relating bead displacement
r�v� to the external force F�v� imposed on it,

r�v� � a�v�F�v� , (5)

and to determine under which conditions, if any, the GSER,
a�v� � 1��6paG�v��, applies, i.e., under what condi-
tions measurements of the displacement of an individual
particle provide a direct measure of the complex shear
modulus of the two-fluid medium. The complete solution
to this problem requires solving Eqs. (2)–(4) with time
derivatives replaced by 2iv, fu, and fv equal to zero,
and with boundary conditions that u�v� � v��2iv� �
r�v� at the surface of the sphere. The resulting functions
u�x, v� and v�x, v� can then be used to calculate the stress
at the surface of the bead and, by integration, the total force
Fb�v� exerted on the medium by the bead. Newton’s equa-
tion for a bead of mass M, 2v2Mu 1 Fb�v� � F�v�,
then determines a�v�. This procedure is laborious at best,
and we will apply a slightly less rigorous one. We localize
the bead-medium forces fa , �a � u, v�, on the bead by set-
ting fa�k, v� � Fa�v�Q�kmax 2 jkj�, where fa�k, v� is
the Fourier transform of fa�x, t�, Fa�v� is the integrated
force exerted by the bead, kmax � p�2a, and Q�x� is the
unit step function. The total force exerted on the medium
by the bead is Fb�v� � Fu�v� 1 Fv �v�, and Newton’s
equation for a bead is the same as above.

Our procedure is to use Eqs. (2)–(4) to calculate
u�k, v� and v�k, v� in terms of fu�k, v� and fv�k, v� and
then to calculate, by integration over k, the network dis-
placement r�v� and fluid velocity w�v� at the bead in
terms of Fa�v�. We then require that the bead, the net-
work, and the fluid all move together at the bead, i.e., that
r�v� be the bead displacement and w�v� � 2ivr�v� be
its velocity. This constraint on r�v� and w�v� imposes a
particular ratio between Fu�v� and Fv �v� that allows us
to obtain a linear relation between r�v� and Fb�v�. When
applied to a sphere in a Newtonian fluid and expanded in
powers of 2iv, this procedure reproduces correctly the
constant and

p
2iv contribution to a21�v���2iv� [5]

and the 2iv inertial contribution with a slightly different
prefactor. We expect similar accuracy for the current
problem. Our result for a�v� can be expressed as

a21�v� �
6paG�v� �1 2 X�v��

�1 1 H� v

vB
� G�v�

2B 1 J�v��
2 v2M , (6)

where we have introduced the complex shear modulus of
the material: G�v� � m 2 ivh and the cross-over func-
tion, H, defined by

H�x� � 1 2
Z 1

0
dz �1 1 iz2�x�21 (7)
as well as the frequency scale: vB � �2m 1 l���a2G�.
In this result we assume that the mass density of the elas-
tic network is significantly lower than that of the fluid,
r�rF ø 1, owing to the open structure of the network.
Consequently, in Eq. (6) we have set r � 0. We have also
introduced the functions J and X which we discuss briefly
below. A more complete analysis of this result will be
published elsewhere [6]. In order for the result given by
Eq. (6) to reduce to the GSER we must find that (at least for
some frequency range) H � 0, J � 2X, and bb�v� �
�2rba2v2��9G�v� ø 1, where rb is the mass density of
the bead.

We start by considering H. From Eq. (7) we note that
H�x� goes to zero as 1�x for x ¿ 1, so, for frequencies
large compared to vB, we can neglect this term. From an
examination of the hydrodynamic modes of the system, the
physical interpretation of this result is clear. The frequency
scale vB is the decay time for the overdamped longitudi-
nal compression mode of the system at the length scale of
the bead. In this mode the network undergoes a compres-
sional wave while the fluid drains from the denser parts
of the network to the more rarefied parts. The H function,
therefore, represents a correction to the microrheological
measurements due to the excitation of longitudinal degrees
of freedom in the system. Whereas in the macrorheological
experiment the applied strain is pure shear, in the micro-
rheological experiment the probe particle responds to all
of the thermally excited modes of the system including the
longitudinal compression modes of the elastic network. At
frequencies higher than vB, however, the network “locks
in” with the incompressible fluid, thereby eliminating the
former’s longitudinal modes and bringing the microrheo-
logical measurement into closer correspondence with
standard rheology. The elimination of the so-called free-
draining (longitudinal) mode at large v has been discussed
previously [2].

We now consider the function J�v�. Its form is
controlled by two dimensionless parameters: bF�v� �
4v2rFa2��G�v�p2� and d � �j�a�2. The parameter bF
is formed by the square of the ratio of the sphere’s radius
to the inertial decay length [7] in the medium and mea-
sures the importance of fluid inertial effects in the compli-
ance. The second parameter, d, simply measures the ratio
of the network mesh size to the sphere radius. In the
limit that both bF and d ø 1, the function J�v� reduces
to 2X�v�. Since rF � rb , bb and bF are of the same
order and both will be small for v , v� with bb�v�� �
bF�v�� � 1. Our approximate calculation is expected to
reproduce the exact result for v , v�, so our estimate of
the region of validity of the GSER should be correct.

In typical experiments [2], the probe sphere is taken to
be orders of magnitude larger than the mesh size so we
may safely assume that d ø 1. For experiments on actin
[2] with a sphere size of 1 mm, bF remains small up to
frequencies on the order of 100 kHz. A similar estima-
tion of the lock-in frequency yields vB � 10 Hz. Thus in
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typical experiments there remains a significant frequency
window, vB , v , v�, where the response function of
the probe particle to an applied force is well approximated
by the GSER. This model calculation reveals the range of
validity of the GSER for typical experiments on soft mate-
rials; furthermore, it presents a quantitive prediction of the
form of the compliance in frequency regimes, where the
GSER does not hold [6].

We now turn to the issue of rheological heterogeneities
introduced by the beads themselves. We imagine a medium
characterized by a homogeneous frequency-dependent
elastic-constant tensor. The introduction of spherical
probe particles perturbs the medium, e.g., by reducing
the network density, in the vicinity of these particles and
leads to a spatially inhomogeneous elastic constant tensor
Kijkl�x, v�. Assuming that the stress-strain relation re-
mains local, that the frequency regime (vB , v , v�

for our coupled network) is such that the medium can
be characterized by a single, frequency-dependent elastic
constant tensor, and that inertial terms can be neglected,
the equation for the displacement variables is

2≠j�Kijkl�x, v�≠kul� � fi�x, v� , (8)

where fi�x, v� is the force density that acts on the surface
of the particles. The displacement responses of the collec-
tion of particles to forces upon them can be described by
a compliance tensor a

�nm�
ij :

Rn
i �v� � a

�nm�
ij �v�Fm

j �v� , (9)

where Rn
i is the displacement vector of the nth particle

and Fm
j is the force on the mth particle. We ask which

components of the compliance tensor depend on the bead-
imposed inhomogeneities of Kijkl�x, v� and which, if any,
depend only on the bulk homogeneous part.

To answer these questions, it is useful to consider first
the simpler but related problem of determining the bulk
dielectric constant of a medium by measuring the self and
mutual capacitances of metal spheres whose presence per-
turbs the dielectric constant in their vicinity. If the di-
electric constant e�x, v� remains local and frequencies are
such that transverse electric fields can be ignored, then the
potential f�x,v� satisfies

2= ? �e�x, v�=f�x, v�� � 4pr�x� , (10)

where r�x� is the charge density at x. It is clear from
Eqs. (8) and (10) that there is an analogy between the
electrical and rheological problems with the identification:
f √! u, e √! Kijkl , and r √! f. The total charge Q
on a metal sphere is the analog of the total force F on a
bead in the viscoelastic medium. The inverse capacitance
tensor C21

nm defined by

fn � C21
nmQm , (11)

where fn is the potential on bead n and Qm is the total
charge on bead m, is the analog of the compliance tensor.

To keep our calculation simple, we consider two con-
ducting spheres of radius a separated by a distance r in a
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medium of dielectric constant e. Each sphere perturbs the
medium locally, producing a spherical region of radius a0

with a dielectric constant ē as shown in Fig. 1. To leading
order in a�r , the inverse self-capacitance is

C21
11 �

1
4pea

Ω
1 1

µ
a0

a
2 1

∂ µ
1 2

e

ē

∂æ
. (12)

This result shows that fluctuations of a single bead are
sensitive to the local environment around the bead and that,
therefore, they do not measure directly the bulk dielectric
constant, e. The inverse mutual capacitance,

C21
12 �

1
4per

∑
1 1 O

µ
a
r

∂∏
, (13)

depends, however, only on the bulk dielectric constant to
leading order in a�r . Thus correlated voltage fluctuations
�f1�v�f2�2v�	 � 2�T�v� ImC21

12 �v� yield a direct mea-
surement of e�v� provided the beads are far enough apart
that C21

12 is proportional to 1�r .
Given the formal analogy between the electric and me-

chanical problems, it is reasonable to assume that displace-
ment fluctuations of a single bead do not provide a direct
measurement of the bulk rheological properties, whereas
correlated fluctuations of two beads do, provided the beads
are far enough apart. Indeed, we will find this to be the
case, however, the vectorial nature of the elastic problem
leads to some complications.

We begin by considering a single sphere of radius a that
perturbs the elastic medium in which it is embedded out
to a radius a0. For r . a0, the medium is characterized by
bulk Lamé coefficients m�v� and l�v�. For r , a0 the
Lamé coefficients are m̄�v� and l̄�v�. Elastic displace-
ments uinner in the inner �r , a0� and uouter in the outer
�r . a0� regions satisfy the equation

m=2u 1 l=�= ? u� � 0 , (14)

FIG. 1. (I) Schematic of a system in which conducting spheres
of radius a embedded in a medium of dielectric constant e are
surrounded by concentric spheres of radius a0 with dielectric
constant ē. (II) Similar schematic of rigid spheres embedded in
an elastic medium with Lameacute; coefficients m, l surrounded
by concentric spheres with Lamé coefficients m̄, l̄.
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where the Lamé constants take their appropriate values in
each region. Putting the force applied to the sphere in the
ẑ direction, the most general solution for u is

u �
aA
r

�nr̂ cosu 1 ẑ� 1
a3B
r3 �3r̂ cosu 2 ẑ�

1 Cẑ 1
Dr2

a2 �sr̂ cosu 2 ẑ� , (15)

where A, B, C, and D are constants. The constants n and
s depend only on the local Lamé constants. The solution
for the strain field as written in Eq. (15) includes a super-
position of a part that decays with distance as 1�r and a
dipolar term. These first two terms are accompanied by
two other solutions: a constant shift and a term growing
with distance from the sphere. The later two terms cannot
occur in uouter as that field must go to zero at large dis-
tances from the sphere. Thus in the bulk solution for the
strain we have two undetermined constants (A and B) while
the inner solution �uinner � has four undetermined constants.
The application of the boundary conditions at infinity has
reduced the problem to finding six constants. Because of
the rigidity of the sphere, the displacement is fixed at its
surface. This boundary condition contributes two more
constraints. The remaining four conditions come from
strain field continuity at the interface of the two elastic
media �r � a0� and the continuity of the two components
of the stress tensor at that interface, srr and sru . The
problem is now completely determined.

The complete solution shows that the self-component,
a

11
ij , of the compliance tensor depends in a complex way on

the local Lamé coefficients m̄ and l̄. Thus, as in the electri-
cal case, fluctuations of a single bead will not yield reliable
measurements of bulk rheology unless a0�a 2 1 ø 1 or
m̄, l̄ do not differ significantly from m, l.

To compute the cross component, a
21
ij �v�, of the com-

pliance tensor relating displacements of bead 2 to forces
on bead 1, we observe that bead 2 will follow the displace-
ment field produced by bead 1 at separations r large com-
pared to a. Thus a

21
ij is simply the coefficient of F1

j in
the displacement field of bead 1. At large r , only the first
term in Eq. (15) survives. The coefficient A in this term is
determined by a global property of the stress field

Fz �
I

dsj sjz , (16)

where the integral is over any closed surface surround-
ing the sphere. Only the 1�r part of the displacement
field contributes to this integral. From this constraint we
can calculate Aouter , the coefficient of the the first term in
Eq. (15) in the outer region �r . a0�. This coefficient is
linear in Fz . From this, we find that the compliance ten-
sor can be decomposed into parts ak, parallel to the vector
r separating the two beads, and a�, perpendicular to r:
a

21
ij �v� � akr̂i r̂j 1 a��dij 2 r̂i r̂j� with

ak �
1

4prm�v�
, (17)

a� �
1

8prm�v�
l�v� 1 3m�v�
l�v� 1 2m�v�

. (18)

Thus fluctuations parallel to the separation vector de-
pend only on the shear modulus, m�v� � G�v�, whereas
those perpendicular to the line of centers depend on both
l and m. In the incompressible limit, a��ak � 1�2,
which is identical to the ratio of the parallel and perpen-
dicular diffusivities of two spheres with (incompressible)
hydrodynamic interactions [8], in agreement with recent
experimental results on two-point microrheology in a
viscous liquid [3]. The experimental determination of
this ratio in viscoelastic materials can be used to test for
compressibility effects at the frequencies relevant to the
experiment.

The combination of single-particle and two-particle po-
sition correlations provide data about both the local envi-
ronment of the probe particle and the bulk material. To test
these ideas we suggest that two-particle position correla-
tions should be measured at smaller particle separations,
where a 
 1�r. Correlations should then be sensitive to
the particle’s local environment.
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