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Quantum Computing Using Dissipation to Remain in a Decoherence-Free Subspace
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We propose a new approach to the implementation of quantum gates in which decoherence during the
gate operations is strongly reduced. This is achieved by making use of an environment induced quantum
Zeno effect that confines the dynamics effectively to a decoherence-free subspace.

PACS numbers: 03.67.Lx, 42.50.Lc

Quantum computing has attracted much interest since it
became clear that quantum computers are in principle able
to solve hard computational problems more efficiently than
present classical computers [1-3]. The main obstacle in-
hibiting realizations arises from the difficulty of isolating
a quantum mechanical system from its environment. This
leads to decoherence and the loss of information stored
in the system, which limits for instance factoring to small
numbers [4]. Schemes have been proposed to correct for
errors induced by decoherence and other imperfections [5].
Alternatively, the use of decoherence-free subspaces [6—9]
has been proposed for which the dependence on error cor-
rection codes may be much reduced. Nevertheless, the
error rate of each operation must not exceed 107 if quan-
tum computers are ever to work fault tolerantly [10].

In contrast to the widely held folk belief that decoher-
ence is to be avoided, we show here that dissipation can be
used to implement nearly decoherence-free quantum gates
with a success rate which can, at least in principle, be
arbitrarily close to unity. The main requirement for this
to work is the existence of a decoherence-free subspace
(DFS) in the system under consideration. States in the DFS
will be called decoherence-free (DF) states. Examples of
DFES are known [9,11], but until now, it was not known
how to manipulate states within a DFS in general [12].

In this Letter we propose a concrete example of a DFS
whose states can be used to obtain DF qubits for quantum
computing. In contrast to earlier proposals, we assume that
all other states couple strongly to the environment. A state
with no overlap with DF states should (nearly immediately)
lead to dissipation. We show that we can interpret the
effect of the environment on the system as that of rapidly
repeated measurements of whether the system is DF or
not. This effect, which we call an environment induced
quantum Zeno effect [13], leads to the fact that a weak
interaction changes only the state of the system inside the
DFS. This allows for a wide range of new possibilities
to perform DF gate operations between the qubits. As
an example we describe a CNOT operation between two
qubits that is almost DF yet rather simple: A single laser
pulse suffices. We will show that the system proposed
fulfills all criteria for a quantum computer proposed by
DiVincenzo [14].
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The system we propose consists of N identical three-
level atoms with a A configuration. We denote the split
ground states of atom i by |0); and |1);, and the excited
state by [2);. The atoms are assumed to be stored in a
line, which can be for instance in a linear ion trap, an
optical lattice, or on top of a wire on an atom chip [15].
To realize a gate operation between two neighboring atoms
(denoted by i = 1 and i = 2 in the following), requires to
move them into a cavity, as shown in Fig. 1. This can
be done by moving the lattice or by applying an electric
field, respectively. We assume that only the atomic 1-2
transition is in resonance with a single resonator mode.
For simplicity the coupling constants of both atoms to the
cavity field mode are taken to be the same, g, = g, = g,
but this is not crucial to our analysis.

The environment consists of a continuum of electromag-
netic field modes surrounding the atoms and the cavity.
This gives rise to decoherence in two different ways: First,
individual spontaneous emission of the atoms outside the
cavity can take place with a rate I'. For atoms inside the
cavity this rate can be decreased to below its free-space
value and will be denoted by I'.,,. In addition, the reso-
nant field mode inside the cavity couples to the outside,
given nonideal mirrors. A photon inside the resonator leaks
out through the cavity mirrors with a rate .

To describe the time evolution of the system and to
find a simple criterion for a DFS we will make use of a
quantum jump description [16]. This method gives the
time evolution under the condition that no photon is emit-
ted, as well as the probability for no photon emission,
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FIG. 1. Schematic view of the system. To perform a gate
operation two three-level atoms are moved to fixed positions
inside a cavity.
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Py(t, i), where |#) is the state of the system at time ¢ = 0.
The system dynamics is described by a non-Hermitian
Hamiltonian H.opg that incorporates the coupling to the
environment. It can be derived rigorously from the full
Hamiltonian. Because of the non-Hermiticity, the norm of
the state vector

[p0(0)y = e Heomat/ By (1)

decreases with time. The probability P to observe no pho-
ton up to time ¢ by a broadband detector of unit efficiency
is given by the squared norm

Po(t, ) = (P(0) 1 4°(1) . 2
The negative derivative of Py attime ¢t = 0 gives the proba-
bility density for an immediate photon emission from state
li) and equals

I('ﬁ) = %<¢|Hcond - Hc-l-ond |¢> 3)

If no photon is observed, the state of the system at time ¢
is the state (1) normalized to unity.

In the following b denotes the annihilation operator for
one photon in the cavity mode. If we choose the interac-
tion picture in a way that the atoms and the cavity mode
plus environment are considered as the free system one
finds in a similar way as in Ref. [17] that the conditional
Hamiltonian equals

2
Heona = ilig > [b12)i(1] — He.]
i=1

2
= ihleay Z |2>zz<2|
i=1
N
— i T D 125l — ikikbTb. @)
i=3
According to the above, a simple criterion for a DF state
of the atoms and the cavity field mode is: No photon
should be emitted, either by spontaneous emission or by
leakage of a photon through the cavity mirrors. A state
|1 belongs to the DFS if and only if

Pot,y)=1 Yit=0. (5)

As can be seen from Eq. (3) no photon emission is possible
if the atoms are all in a ground state and the cavity field is
empty. The interaction of the system with the environment
is effectively switched off [8]. In addition, there is no
energy in the system which can be emitted in the form
of a photon. The 2V DF ground states of the system are
therefore ideally suited as the N DF qubit memory for the
quantum computer [18]. The ith qubit is formed by the
two ground states |0); and |1); of atom i while there is no
photon in the resonator mode.

In addition to these states we obtain more DF states
if we neglect spontaneous emission by the atoms inside
the cavity. These states should only become populated
during gate operations and allow for nearly DF gates. For
I'cav = 0 given Eq. (3) no photon emission can also take

place if a state |2); (i = 1,2) of the atoms inside the cavity
is excited. However, this is not yet sufficient. The cavity
mode must never become populated, i.e., the system’s own
time evolution must not drive states out of the DFS [8].
In the following we denote by |ng) = |n) ® |¢) a state
with n photons in the cavity and the atoms in state |¢).
A state |0¢) is DF if all matrix elements of the form
(n@'| Heong |0¢) vanish for n # 0 and arbitrary ¢’. This
is the case if and only if

J-ley= D IDa(2le) = 0. (©)
i=12
Besides the superpositions of the atomic ground states the
atoms inside the cavity can also be in a superposition with
the trapped state |a) = (|1)112)> — [2)1]1)2)/+/2, a maxi-
mally entangled state of the two atoms [17,19].

For T'c;y = 0 one finds from Eqgs. (4) and (6) that
Heong |¢y) = 0. Without an additional interaction a DF
state does not change in time. To manipulate the states
inside the DFS a weak interaction can be used. But before
we discuss the effect of this interaction we need to study
the effect of the environment on the system in more detail.
Let us define the time AT as the minimum time in which
a system in an arbitrary state outside the DFS definitely
emits a photon. Then we can interpret the observation
of the free radiation field outside the cavity over a time
interval AT as a measurement of whether the system is
in a DF state or not. The outcome of the measurement is
indicated by the emission of a photon (no DF state), or
its absence (DF state).

Here, the cavity field interacts continuously with its
environment and the system behaves like a system under
continuous observation, e.g., the time between two con-
secutive measurements is zero. In such a case the quan-
tum Zeno effect [13] can be used to predict the time
evolution of the system in the presence of a weak inter-
action which tries to change the state of the system. The
quantum Zeno effect is a consequence of the projection
postulate for ideal measurements and suggests that any
process that would lead out of the DFS is “frozen” by the
measurements, which always project the system back into
a DF state. In this way the interaction with the environ-
ment protects the system against dissipation. On the other
hand, the dynamics within the DFS is insensitive to the
measurements and takes place almost unmodified.

In the following Hc,nq describes the conditional time
evolution of the system in the presence of an interaction.
As long as the interaction is weak enough, the effect of the
environment on the system can still be interpreted to a good
approximation as rapidly repeated measurements. There-
fore the time development operator over the small time
interval AT is given by PppsUcond(AT,0)Ppgs, Where
Pprs is the projector on the decoherence-free subspace.
This leads to the effective Hamiltonian

Hetr = PprsHcond PpFs » @)
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which has a very different effect compared to atoms in free
space.

As an example and to show how to realize a CNOT gate
we consider a weak laser pulse applied to the atoms inside
the cavity only. The atoms should be spatially well sepa-
rated so that the laser pulses can be applied to each atom
individually. The complex Rabi frequencies for the j-2
transition (j = 0,1) of atom i (i = 1,2) are denoted by

Q( If a laser 1rrad1ates the atoms the Hamiltonian

Z Z (Y@l + He]  (8)

i=1 j=

has to be added to the right-hand side of Eq. (4). The Rabi

frequencies Q;-l) set the time scale on which the states of
the atoms are changed due to the laser. This time must
be much longer than the measurement time AT which is
of the order of 1/k and k/g>. In addition spontaneous
emission by the atoms has to be negligible during the gate
operation which leads to the condition

| I |Q;~i)| <k and g%/k. 9)

Higser1 =

A cNor gate performs a unitary operation in which the
value of one qubit is changed if and only if the control
bit is in state |1). We choose the first qubit as the control
bit which means that the gate should exchange the states
[010) and [011), while the states |000) and |001) remain
unchanged. (Here the state [0j;j,) describes a system
with no photons in the cavity while the atoms are in state
[i1l72)2). Egs. (4), (7), and (8) and the choices

oV —a? = 20, Q(Z)—ﬁn,

and Q) = (10)
for the Rabi frequencies lead together with I'.,, = 0 to the
effective Hamiltonian

h
Her = E[Q(IOIO}{OaI - |0a><011|) + Hece.]. (11)

A single laser pulse of length T = +/27/|Q| therefore
yields the desired time evolution operator for the CNOT,

Ue(T,0) = |010)(011] + H.c. (12)

Here H.¢r is Hermitian and due to Eq. (2) the probability
for a photon emission during the laser pulse is, within the
approximations made, not possible.

It might be helpful to illustrate the mechanism which
confines the dynamics to the DFS in more detail. The
time evolution of the system under the condition of no
photon emission is given by the conditional Hamiltonian
H.ong + Higser1- The full equations of motion resulting
from Eq. (1) reveal that only the amplitudes of DF states
change slowly in time, on a time scale proportional to
1/]Q|. If the system is initially in a DF state the laser
pulse excites the states outside the DFS. Then the exci-
tation is transferred with a rate proportional g into states
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in which the cavity mode is populated. Those states are
immediately emptied by one of the following two mecha-
nisms: One possibility is that a photon leaks out through
the cavity mirrors. But, as long as the population of the
cavity field is small, the leakage of a photon through the
cavity mirrors is unlikely to take place. With a much higher
probability the excitation of the cavity field vanishes during
the conditional time evolution due to the term —ifik bTh
in the conditional Hamiltonian in Eq. (4). No population
can accumulate outside the DFS.

We also derived the time evolution of the DF states
by adiabatically eliminating the amplitudes of all non-DF
states. This is possible due to the frequency scale separa-
tion (9). To lowest order in )/« and Q «/g? we recover
Eq. (12). The more precise result including the next higher
order allows for an optimization of the gate operations [20].

If one assumes I'c,y # O the state |0a) does not corre-
spond to a DF state and a photon may be emitted during
the gate operation. In addition finite parameters of g and «
may lead to the leakage of photons through the cavity mir-
rors. These effects have been taken into account in Fig. 2
which results from a numerical solution of the Schrodinger
equation (1) and shows the probability for no photon emis-
sion during a single CNOT operation. Here the initial state
|010) was chosen. The figure confirms that for vanishing
spontaneous emission the probability of success becomes
arbitrarily close to unity if || is made small. For finite
I'c.v, spontaneous emission is the limiting factor due to
the increasing duration of the operation for small |Q]. If
no photon is emitted during the gate operation, the fidelity
of the state at the end of the pulse compared to a state ex-
pected for an ideal CNOT operation is very high. For the
parameters used in Fig. 2 the final amplitude of the desired
state |011) is always higher than 98% [20].

Finally, we point out that there exists a very simple
scheme in which the transition between a DF state and
non-DF states is also strongly inhibited, a three-level atom
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FIG. 2. The probability for no photon emission during a CNOT
operation as a function of the Rabi frequency () for Q(()z) =

V20, Q(l) —Q](z) Q /2, k = g, and different values of
I'c.y. The system is initially in the state [010).
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with a V configuration. One transition between the ground
state and a metastable state of the atom is driven by a very
weak laser field with Rabi frequency (), while a laser
with a very high Rabi frequency ()¢ couples the ground
state to a level with a high decay rate I's. In this scheme
the metastable state corresponds to the DFS, while ||
plays the role of the coupling constant g and I the role
of k. Once in a metastable state the atom remains there
for a long time proportional to (|Qs|/|Q])? [21]. This is
known as a macroscopic dark period and the scheme has
been used to test the quantum Zeno effect experimentally
[22]. Equally, we expect for the scheme proposed here
that the mean time before photon emission is proportional
to (g/|Q)? and is much longer than the gate duration
which is proportional to g/|{|. This is shown explicitly
in Ref. [20] and encourages us to believe that our proposal
is experimentally feasible. Because of the correspondence
of these schemes we could also describe our proposal as
“quantum computing in a dark period.”

Our system also fulfills the remaining criteria for a quan-
tum computer [14]. The single qubit rotation, which to-
gether with the cNOT forms a “universal” set of quantum
gates, can be performed with the help of an adiabatic popu-
lation transfer [23]—a technique which has been realized
with high accuracy in experiments [24]. It requires two
laser pulses and the laser fields couple to the 0-2 and 1-2
transitions, respectively, with the same large detuning [20].
The readout of the information stored in the qubits can
be realized with an electron shelving technique [25]. The
system is scalable, with well-characterized qubits, can be
prepared in a defined initial state, and the relevant deco-
herence time is much longer than the gate operation time if
condition (9) can be achieved. In summary, we have made
a proposal for quantum computing using dissipation. Why
the system remains in a DFS can be understood in terms
of the quantum Zeno effect.
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