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A general scheme to perform universal, fault-tolerant quantum computation within decoherence-free
subspaces (DFSs) is presented. At most two-qubit interactions are required, and the system remains
within the DFS throughout the entire implementation of a quantum gate. We show explicitly how to
perform universal computation on clusters of the four-qubit DFS encoding one logical qubit each under
spatially symmetric (collective) decoherence. Our results have immediate relevance to quantum computer
implementations in which quantum logic is implemented through exchange interactions, such as the
recently proposed spin-spin coupled quantum dot arrays and donor-atom arrays.

PACS numbers: 03.67.Lx, 03.65.Bz, 03.65.Fd, 89.70.+c
Decoherence-free subspaces (DFSs) have been recently
proposed [1–3] to protect fragile quantum information
against the detrimental effects of decoherence. This is
especially important for quantum computation, where
maintaining the quantum coherence of states forms the
cornerstone of the promised speedup compared to classi-
cal computers [4]. Under certain assumptions about the
symmetry of the noise processes, most notably spatially
correlated errors, there exist subspaces of the system’s
Hilbert space that are not affected by the noise, and are
thus decoherence free. Maintaining a system inside a DFS
can therefore be thought of as a “passive” error-prevention
scheme. It was shown recently that DFSs are robust under
symmetry-breaking perturbations and are thus ideal codes
for quantum memory [5]. Prior to the work reported
here it was not known whether quantum computation on
DFSs was possible without catastrophically taking the
system outside the DFS [thus exposing it to (collective)
errors] under realistic physical constraints. Realistic
implementable gates are restricted to one- and two-body
interactions and a finite number of measurements. Previ-
ous demonstrations of universal quantum computation on
DFSs did not satisfy these criteria [3,6].

In this work we develop a formalism that allows us
to find Hamiltonians involving only one- and two-qubit
interactions, which can be used to implement universal
quantum gates without ever leaving the DFS. When com-
putation is performed in this manner the system is never
exposed to errors, so that this approach is naturally fault
tolerant. This is in marked contrast to “active” quantum
error correction codes (QECCs) [7,8], where errors do take
code words out of the code space, and fault tolerance re-
quires a hefty overhead [9]. Moreover, when the symmet-
ric noise process allowing for the existence of the DFS is
perturbed, we show that it is possible nevertheless to com-
pletely stabilize the computation, fault tolerantly, by using
a concatenation scheme with a QECC. This scheme, which
we first proposed in [10], has the advantage that it operates
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with an error threshold that depends only on the perturb-
ing error rate, and is thus particularly attractive considering
the stringent requirement on the threshold for fault-tolerant
quantum computation [9]. The formalism we develop here
connects DFSs with the theory of stabilizer QECCs [11].
We apply it to derive gates in the important collective de-
coherence model (the decoherence mechanism expected to
dominate in the solid state at very low temperatures), and
explicitly construct a universal set of gates operating on
clusters of four physical qubits that each encode one logi-
cal qubit. In conjuction with the concatenated code of [10],
this suffices to implement universal fault-tolerant compu-
tation on DFSs robustly. Thus we show here that one can
employ the full power of DFSs in preserving coherence not
merely for quantum memory applications, but also for full-
scale quantum computing. We outline an application of
our results to a class of potential physical implementations
of quantum computers, in which quantum logic is imple-
mented through internal exchange interactions. This class
includes the recently proposed spin-spin coupled quantum
dot arrays [12] and the silicon-based nuclear quantum com-
puter [13].

Conditions for decoherence-free subspaces.—Consider
the dynamics of a system S coupled to a bath B which
evolves unitarily under the combined system-bath Hamil-
tonian H � HS ≠ IB 1 IS ≠ HB 1

PA
a�1 Sa ≠ Ba ,

where HS (HB) is the system (bath) Hamiltonian, IS

(IB) is the identity operator on the system (bath), and Sa

(Ba) acts solely on the system (bath). The last term in
H is the interaction Hamiltonian HI . The evolution in a
subspace H̃ of the system Hilbert space H is unitary
for all possible bath states if and only if (i)

Sajc� � cajc�, ca [ � (1)

for all states jc� which span H̃ , and for every operator
Sa in HI , (ii) S and B are initially decoupled, and (iii)
HSjc� has no overlap with states in the subspace orthog-
onal to H̃ [1,10]. A subspace of H which fullfills these
© 2000 The American Physical Society
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requirements is a decoherence-free subspace. It is impor-
tant to notice that if condition (iii) is not fulfilled then states
leak out of the DFS, and the usefulness of these subspaces
for the storage of quantum information is lost.

General stabilizer formalism.—In order to identify a set
of fault-tolerant universal gates for computation on a DFS,
and to make a more explicit connection to QECCs, we
recast the definition of a DFS [Eq. (1)] into the stabilizer
formalism. By analogy to QECC [11], we define the DFS
stabilizer S as a set of operators Db which act as identity
on the DFS states:

Db jc� � jc� , ; Db [ S , iff jc� [ DFS . (2)

Here b can be a discrete or continuous index; S can form
a finite set or group. Our S is a generalization of the
QECC stabilizers which restrict S to an Abelian subgroup
of the Pauli group (the group formed by tensor products
of Pauli matrices on the qubits) [11]. While some DFSs
can also be specified by a stabilizer in the Pauli group
[14], many DFSs are specified by non-Abelian groups,
and hence are nonadditive codes [15]. The stabilizer of
a QECC allows identification of the errors the code can
correct. In general an error process can be described by
the Kraus operator-sum formalism [8]: r !

P
m AmrAy

m.
The Kraus operators Am can be expanded in a basis Ei of
“errors.” Two types of errors can be dealt with by stabilizer
codes: (i) errors Ey

i Ej that anticommute with any S [ S ,
and (ii) errors that are part of the stabilizer (Ei [ S ). The
first class is errors that require active correction; the second
class is “degenerate” errors that do not affect the code at
all. A duality between QECCs and DFSs can be stated as
follows: QECCs were designed primarily to deal with type
(i) errors, but can also be regarded as DFSs for the errors
in their stabilizer [14]. Conversely, DFSs were designed
primarily to deal with type (ii) errors, but can in principle
be used as a QECC against errors that are type (i) with
respect to S .

Consider now the following continuous index stabilizer:

D�y0, y1, . . . , yA� � D� �y� � exp

"
AX

a�1

�caI 2 Sa�ya

#
.

(3)

Clearly, the DFS condition [Eq. (1)] implies that
D� �y�jc� � jc�. Conversely, if D� �y� jc� � jc� for all
�y, then, in particular, it must hold that for each a,
exp��caI 2 Sa�ya� jc� � jc�. Recalling that f�A� �
exp �A� is a one-to-one continuous mapping of a small
neighborhood of the zero matrix 0 onto a small neighbor-
hood of the identity matrix I, it follows that there must
be a sufficiently small ya such that �caI 2 Sa� jc� � 0.
Therefore the DFS condition (1) holds if and only if
D� �y� jc� � jc� for all �y.

In order to achieve general-purpose universal quantum
computation one must demonstrate that one can perform
a set of operations (gates) U which allow for the imple-
mentation of nearly every unitary operation on the quan-
tum computer (dense in the set of unitary operations)
[16]. In analogy to computation using physical qubits,
for universal computation on DFSs two types of gates
will be needed: (i) gates performing operations within
a DFS; and (ii) gates linking two or more DFS clus-
ters (thus performing operations between logical qubits
encoded into different clusters). The stabilizer formal-
ism is useful for identifying allowed gates that take code
words to code words [11]. The allowed operations U
transform the stabilizer into itself. Let jc� [ H̃ , i.e.,
D� �y� jc� � jc�. For U to be an allowed operation, Ujc�
must be in H̃ , so D� �y 0� �Ujc�� � Ujc�. This means
UD� �y�Uy � D� �y 0� �y�� and the D� �y 0� �y�� must cover S .
It is sufficient to have �y 0� �y� to be a one-to-one mapping.
If S is a unitary group then the set of allowed gates is the
normalizer of S [17]. To derive a similar condition for (ii)
which involves gates between two different DFS clusters
with stabilizers S1 and S2, we note that S12 � S1 ≠ S2 is a
stabilizer for the two DFS clusters. The gates U are unitary
transformations performed by switching on Hamiltonians
H for some time t, acting on physical qubits in the DFS.
So far we required only that the action of the gate preserve
the subspace at the conclusion of the gate operation, but
not that the subspace be preserved throughout the entire
duration of the gate operation. By posing the stronger re-
quirement that the state of the system stays inside the DFS
during the entire switching time of the gate we achieve
natural fault tolerance on the DFS. Rewriting our con-
dition as U�t�D� �y� � D� �y 0� �y��U�t�, taking the derivative
with respect to t and evaluating this at t � 0 we obtain:

Theorem: A sufficient condition for the generating
Hamiltonian to keep the state at all times entirely within
the DFS is HD� �y� � D� �y 0� �y��H where �y 0� �y� is one to
one and time independent.

Collective decoherence.—We now focus on a particu-
larly important system-bath interaction model, in which
clusters of several qubits couple to the same bath mode:
the collective decoherence model. Specifically, the interac-
tion Hamiltonian is of the form HI �

P
a�x,y,z Sa ≠ Ba ,

where Sa �
PK

j�1 sj
a and sj

a are the Pauli matrices ap-
plied to the jth qubit. The Sa form the (semisimple)
Lie algebra su�2� and the DFS condition (1) becomes
Sajc� � 0 [3]. The stabilizer for the collective decoher-
ence DFS [Eq. (3)] is given by

D� �y� � ei �y? �S
KO

J�1

�Ij cos k �y k

1 �sj ? �y� k �y k sin k �y k�

where �S � �Sx , Sy , Sz� and jj �yjj � �
P

a y2
a�1�2 may be

complex. D� �y� consists of all collective qubit rotations 1

contractions, i.e., an operation of the form G≠K where
G� �y� is any element in SL�2�. The smallest number of
physical qubits yielding a full “encoded DFS qubit” is
four [1], given by the two states with 0 total angular
momentum:
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j0L� � js� ≠ js� ,

j1L� �
1
p

3
�jt1� ≠ jt2� 2 jt0� ≠ jt0� 1 jt2� ≠ jt1�� ,

(4)
where js� � �j01� 2 j10���

p
2 is the singlet state of two

qubits, and jt2,0,1� � �j00�, �j01� 1 j10���
p

2, j11�	 are
the corresponding triplet states. Let H̃4 � �j0L�, j1L�	;
H̃4 is immune to all errors which can be written as sums
of collective operations of the form G≠4. In addition it
is easy to check that H̃4 is a distance-2 QECC [8,18],
meaning that it can detect arbitrary single qubit errors.

Universal gates for a logical qubit.—We now apply the
general formalism developed above to derive a set of uni-
versal gates on clusters of four-qubit DFSs under collec-
tive decoherence. While it is certainly desirable to consider
computation using DFSs over arbitrary block size [18], it is
important to realize that the encoding into L � K�4 blocks
of four is entirely sufficient to implement universal “en-
coded quantum computation” over H̃ ≠L

4 . The four-qubit
DFS is also of special interest in the concatenation scheme
proposed in [10]. There the DFS qubit of Eq. (4) becomes
the building block for a QECC that protects against per-
turbing single physical qubit errors. By using DFS qubits
instead of physical qubits, the resulting concatenated code
offers an error threshold for fault-tolerant computation that
depends only on the perturbing single qubit error rate.
However, the threshold for QECC relies heavily on the
ability to perform error correction (i.e., “computation”)
which does not catastrophically create more errors than
it fixes (fault tolerance). Concatenated DFS-QEC codes
will be efficient only if (i) a realistic (no more than two-
body interactions) set of universal quantum gates keeping
states entirely within the DFS is used, and (ii) preparation
and decoding of DFS states are performed fault tolerantly.
Here we provide such a set of universal quantum gates,
and detail the preparation and decoding of DFS states.

It is sufficient to be able to apply (i) all single qubit
rotations [SU�2�] together with (ii) the two-qubit con-
trolled phase gate (CP defined below) on any two logi-
cal qubits, in order to perform any unitary transformation
[19]. We now show how to construct this universal set
of gates. The stabilizer for the four-qubit DFS H̃4 is of
the form D� �y� � G≠4, which is manifestly invariant un-
der permutations of the qubits. The Hermitian exchange
(transposition) operation that switches only qubits i and j,
Eijjx�ijy�j � jy�ijx�j (x, y � 0 or 1), leaves the stabilizer
element-wise invariant and so trivially fulfills the condi-
tions of the Theorem (with �y 0 � �y). Thus exp�2iuEij�
preserves the DFS, and is a valid unitary operation by a two
physical qubit Hamiltonian (see also [20]). Consider the
action of Eij on the basis states of Eq. (4): E12 � E34 act-
ing on these states takes j0L� ! 2j0L� and j1L� ! j1L�.
2E12 thus acts as the encoded sz (Z̄ —a bar indicates
operations on the encoded DFS qubits). Furthermore,
E13 � E24 applied to the basis states in Eq. (4) acts as
1760
E13 �

0
@ 1

2 2

p
3

2

2

p
3

2 2
1
2

1
A . (5)

Thus Hx � 2�2�
p

3� �E13 1
1
2E12� acts as an encoded

sx (X̄) on the DFS qubit. Hx can be implemented either
by turning on the two-qubit Hamiltonians at the same time,
or approximated by using a finite number of terms in the
Lie sum formula: ei�aA1bB� � limn!`�eiaA�neibB�n�n �
eiaA�neibB�n 1 O�1�n2�. The ability to implement Z̄
and X̄ is sufficient to complete the Lie algebra su�2�,
and thus to implement any gate in SU�2� on the encoded
qubits. This can be done using an Euler angle construc-
tion for the desired gate as is done routinely in NMR
[21], or, following the standard arguments for universal-
ity [19], through an approximation to the Lie product for-
mula e�A,B� � limn!` Qn � Q 1 O�1�n3�2�, where Q �
eiA�

p
neiB�

p
ne2iA�

p
ne2iB�

p
n. We note that the Euler angle

construction is in general simpler to implement in practi-
cal implementations because it does not require extremely
fast switching, but we defer the construction of optimal
gate sequences to future work. To conclude, we can gen-
erate any SU�2� operation on the encoded qubits by sim-
ply turning on and off the appropriate two-qubit exchange
Hamiltonian.

To complete the universal set of gates we explicitly
construct an encoded controlled phase gate C̄P between
two DFS qubits (i.e., two separate four-qubit DFS clus-
ters). In doing so we assume that the qubits are physi-
cally close during the gate switching time, so that they form
an eight-qubit, 14-dimensional collective decoherence
DFS H̃8 (see [20] for a derivation of a general dimension
formula). Four of these 14 dimensions are spanned by the
two four-qubit DFSs (H̃4 ≠ H̃4). Given two clusters of
K physical qubits each, the exchange interaction between
any two qubits preserves H̃2K , since the stabilizer is
just G≠2K . Thus a sequence of gates constructed purely
out of exchange operations will never take the system
out of H̃2K . Remarkably, exchange interactions alone
can be shown to generate the full (special) unitary group
on any collective DFS H̃2K (in particular, K � 4)
[18]. Therefore generating C̄P is a matter of finding an
appropriate explicit construction, which we now present.
Defining h1 � �E26, E12 1 E25� 1 �E15, E12 1 E16�,
h2 �

P8
j�5�E1j 1 E2j�, and c � 1

32 �h1, �h2, h1��, a
calculation shows that c acts on the two four-qubit
DFSs as j0L0L� ! 0, j0L1L� ! j0L1L�, j1L0L� ! 0, and
j1L1L� ! 0. The Hamiltonian c then yields a controlled
phase gate by exponentiation: C̄P�u� � exp�icu�. The
action of c can be understood as follows: (i) h1 takes states
from H̃4 ≠ H̃4 into H̃8; (ii) h2 then applies a phase to
a single one of the states in H̃8; (iii) h1 returns the
states from H̃8 into H̃4 ≠ H̃4. We have thus
explicitly constructed a naturally fault-tolerant uni-
versal set of gates, which utilizes only two-body exchange
interactions.
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It remains to be shown that it is possible to prepare and
decode states in the DFS fault tolerantly. We first note
that the j0L� state of Eq. (4) can be constructed by simply
preparing two pairs of qubits in the singlet state (in gen-
eral for K $ 4 qubits the state j0L� can always be chosen
to be a product of singlets). All the other DFS states (like
j1L�) can be obtained by applying the appropriate encoded
operation to j0L� (like X̄). To verify correct state prepara-
tion and to decode we need fault-tolerant measurements in
the encoded computational basis �j0L�, j1L�	 (eigenstates
of Z̄). It is easily checked that measuring �s1

z , s2
z , s3

x ,
s4

x 	 on the four qubits allows one to distinguish j0L�
and j1L� but destroys the DFS state. To perform a fault-
tolerant and nondestructive measurement of Z̄ we require
ancilla states prepared in the DFS state j0L� and an en-
coded controlled-not (C̄X) gate, which we have at our dis-
posal from the construction of universal gates above [C̄X

acts as jxL, yL� ! jxL, �xL 1 yL�mod2�, where x, y � 0
or 1]. By applying a C̄X gate between the DFS state to
be measured and the ancilla, and performing a destructive
measurement on the ancilla, we obtain a nondestructive
measurement of Z̄, which is tolerant of collective errors
on the two DFSs. To prevent possible uncontrolled error
propagation caused by an incorrectly prepared ancilla, we
prepare multiple j0L� ancillas and apply C̄X’s between the
DFS state to be measured and each ancilla. Together with
majority voting this provides a fault-tolerant method for
measuring Z̄ [11]. This procedure can also be used to ver-
ify the preparation of j0L�, and thus assures fault-tolerant
DFS-state preparation.

Application to solid-state quantum computer implemen-
tations.—Two of the most promising proposals for quan-
tum computer implementations, the spin-spin coupled
quantum dots [12] and the Si:31P nuclear spin array [13],
rely on controllable exchange interactions for the imple-
mentation of quantum logic. The pertinent part of the
internal Hamiltonian is of the Heisenberg type: HHeis �
1
2

P
ifij JijSi ? Sj . Here Si � �si

x , si
y , si

z� is the Pauli
matrix vector of spin i and Jij are exchange coefficients,
tunable by variation of external parameters such as local
electric and magnetic fields. It is easily checked that Eij �
1
2 �IS 1 Si ? Sj� is an exchange operator of physical qubits
i and j [22]. Details of the tuning of the Jij were worked
out in [12,13], and show high sensitivity to exter-
nally applied electric and magnetic fields. A range of
about 0–1 meV is attainable in quantum dots [12] by
tuning the magnetic field through 0 2 T. Thus HHeis is
a sum over exchange terms with tunable coefficients, and
can be used to implement quantum computation over a
DFS as detailed above. A magnetic field $2 T and a
temperature #100 mK are required in the Si:31P proposal
in order that the electrons occupy only the lowest energy
bound state at the 31P donor [13]. At these extremely
low temperatures we expect that collective decoherence
conditions are attained (also in coupled quantum dots),
since only the longest wavelength phonon modes are
occupied [23], to which the qubits are then coupled col-
lectively [1,20]. Our results therefore imply that quantum
computation on DFSs in nuclear spin arrays and quantum
dots should be possible with carefully controlled exchange
interactions.

In summary, we have derived general conditions for
fault-tolerant quantum computation on a DFS, and shown
how to implement a universal set of gates for the impor-
tant case of collective decoherence by turning on /off only
two-qubit exchange Hamiltonians. In our construction the
system never leaves the DFS during the entire execution of
a gate, so that fault tolerance is natural and, in stark con-
trast to the usual situation in quantum error correction, ne-
cessitates no extra resources during the computation. Our
results are directly applicable to any quantum computer
architecture in which quantum logic is implemented using
exchange interactions, in particular, to some of the recent
promising solid-state proposals for quantum computation.
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