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Self-Consistent Density Functional Calculation of Field Emission Currents from Metals
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We have developed a fully self-consistent method which is suitable to examine field emission currents,
on the basis of the density functional theory. In our method, the nearby counterelectrode is not neces-
sary. By using this method, we have investigated field emission currents from a biased metallic surface
represented by the jellium model. We have found that the energy barrier between the jellium and vacuum
becomes lower than the Fermi energy under strong electric fields (e.g., 10 V/nm for r; = 4 bohr). In
this situation, the slope of the Fowler-Nordheim plot becomes flatter than that under a weaker field.

PACS numbers: 79.70.+q, 73.30.+y, 73.40.Gk

Recently, field emitters have attracted much attention
as promising candidates of compact and controllable cold
electron sources which are useful elements in vacuum mi-
croelectronic devices such as microwave amplifiers, flat
panel displays, and others [1]. Since several applications
such as amplifiers require strong electric currents, it is nec-
essary to clarify the conditions to obtain high emission cur-
rents by using field emitters.

So far the Fowler-Nordheim (FN) theory [2] has been
widely used to analyze field emission currents. In this
theory emission currents are evaluated on the basis of the
free-electron approximation and the Wentzel-Kramers-
Brillouin (WKB) method [3], and thus any quantitative
arguments based on the FN theory are highly question-
able. Nevertheless, almost all of the experimental or
engineering-oriented studies concerning field emission
still rely on the theory. The most probable reason for
this is that alternative quantitative theories have not been
established yet. As an approach to improve the FN theory,
modification of the theory by including the classical
image potential [4] is well known. However, this approach
cannot be an essential solution, because it still relies on
the WKB method.

To go beyond the free-electron approximation, Jensen
[5] analyzed field emission potential barriers on the basis
of the electron distribution which is calculated non-self-
consistently from the triangular potential as that considered
in the original FN theory. By using this method, further
improvement to the image-potential corrected FN theory
can be derived, for example, in the form of a shift of the
image plane. However, a change of the effective potential
caused by redistribution of electrons due to applied fields
is not taken into account self-consistently, and thus this
method is still insufficient especially for high fields.

In another approach reported by Lang et al. [6], field
emission currents were calculated self-consistently within
the density functional theory (DFT) [7]. They considered
a model similar to the configuration of scanning tunneling
microscope (STM) experiments where there are two elec-
trodes corresponding to a STM tip and a sample surface
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with a bias voltage between them. This model is not nec-
essarily appropriate for analyses of field emission currents,
because the distance between the two electrodes, 1.59 nm,
is significantly shorter than a typical distance between an
emission cathode and an anode in field emission experi-
ments, the order of 10 cm. This short distance involves
effects other than the electric field such as chemical inter-
action between the two electrodes [8]. To eliminate such
undesirable effects, a self-consistent method without using
a counterelectrode is desired, but such a method has not
been established yet because of the difficulty in direct treat-
ment of electronic states under unscreened electric fields
in vacuum.

In this Letter, we propose a single-electrode method for
fully self-consistent density functional calculation of field
emission currents. In this method, the microscopic aspects
of field emission are described without using a counter-
electrode, in contrast with the previous DFT calculation
[6]. Our results for metallic surfaces show that the poten-
tial barrier at the surface becomes lower than the Fermi
energy under strong electric fields.

In the present calculation, a single metallic field emit-
ter is modeled by a semi-infinite jellium, in which posi-
tive ions are replaced by a uniform background charge.
Hereafter we take the semi-infinite jellium region to be
z = 0. The positive background charge can be expressed
by p+(z) = p+O(—z), where O is the Heaviside step
function. The density p is related to the Wigner-Seitz
radius r, through 37 rip, = 1.

On the basis of the above model, we perform self-
consistent DFT calculation to obtain the electron density
and the potential barrier. Since there is no atomic structure
in the direction parallel to the surface, the single-particle
wave function can be expressed as V(r) = (z) exp(ik) -
r|). Then the Schrodinger equation in the atomic unit can
be written as

—39"() + V@) = (E - slkgPyE). 1)

which should be solved for a given energy E and a given
surface-parallel wave vector kj. Within the DFT, the
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effective potential V(z) in the above equation is a sum
of the Hartree, exchange-correlation, and external electro-
static potentials. For the exchange-correlation potential,
we adopt the one proposed by Ceperley and Alder [9]
within the local density approximation. As for electrostatic
potential (a sum of Hartree and external electrostatic po-
tential), it is calculated by the Poisson equation. Here we
would like to emphasize that in the single-electrode method
we can treat the electric field F directly as a boundary con-
dition of the Poisson equation.

In the present method, Eq. (1) is discretized along the
z direction by taking mesh points z; which satisfy z;11 —
z; = h for any i, and is expressed as

Ai1p(zi-1) — Bith(zi) + Aiip(ziv1) = O(h°). (2)
Here A; and B; are determined on the basis of the
Noumerov discretization method [10] and can be ex-
pressed by E, k|, h, and V(z;). In addition, we divide the
whole system into the following three regions: region I,
the vacuum region far from the jellium where the electric
field F is considered to be constant, region II, the region
where the electron distribution should be self-consistently
determined by using Eq. (2), and region III, the jellium
region far from the vacuum where electron distribution is
considered to be constant.

In region I, the solution of Eq. (1) is known to be the
Airy functions Ai(—¢) and Bi(—/¢) [11]. Since we are
interested in field emission currents, we consider only an
electron wave traveling toward +o. This wave can be
expressed as

Y(z) = tC[Bi(=¢) + iAi(=0)] =1w(z). (3)
Here ¢ is an unknown transmission coefficient, C is a nor-
malization constant, and ¢ = (2F)'3[z — z1 — (V(z1) —
E + %Ikulz)/ F], where zp is an arbitrary-chosen point in
region I. The unknown coefficient ¢ can be eliminated
by utilizing the continuation conditions for ¢(z) and its
derivative at the boundary between regions I and II [12].
Then we obtain a boundary condition to be satisfied as

() = "D = . )

w(z)
Furthermore, ¢'(z) in this equation is discretized by the
Noumerov method to obtain an algebraic expression. In
region III, where both incident and reflected waves are
expressed as plane waves, we can eliminate an unknown
reflection coefficient similarly by using the continuation
conditions at the boundary between regions II and III.
Then, we can solve Eq. (2) in region II, and can calcu-
late electric current density j,:

. 2 inc * !
27 am) fdk Im[¢"(2)¢'(2)], ©)

where k" is a wave vector of incident waves.

In the following calculation, the boundaries between re-
gions I and II, and regions II and III are taken to be z = 40
and —20 bohr (1 bohr = 0.0529 nm), respectively. The
mesh size of the z-axis grid 4 is taken to be 0.2 bohr.

In Fig. 1, we show the effective potential V(z) for r; =
4 bohr obtained from the present self-consistent calcula-
tion. Here V(z) in the case of the applied field F = 0
and 10 V/nm (=1 V/A) are shown by dashed and solid
lines, respectively. It should be mentioned that the slope
of V(z) for F = 10 V/nm is nearly constant in the re-
gion z = ~35-40 bohr which is not shown in Fig. 1. We
have confirmed that the following results hardly change
if the boundary between regions I and II is shifted to be
z = 50 bohr. This confirms the validity of our assumption
that F is constant in region I (z > 40 bohr) [13]. In the
case of F = 0, the Fermi energy Er of the jellium elec-
trode which is represented by the dotted line is 3.13 eV,
and the work function @ is evaluated to be 2.91 eV. This
value is almost the same as that of Perdew and Wang
(2.90 eV) [14]. In the case of F = 10 V/nm, the Fermi
energy is shifted upward by 0.01 eV compared to that of
F = 0. Such a shift of Er caused by applying an electric
field has already been pointed out by Lang [15].

As has already been known, the potential barrier at
the jellium-vacuum interface becomes smaller as the ap-
plied electric field (F > 0) becomes larger. An inter-
esting finding in our results is that this barrier height
Vmax 18 only 0.02 eV higher than Ef in the case of F =
10 V/nm. In other words, the barrier for electrons with
energy of ~FEf nearly disappears due to the strong field
F = 10 V/nm, which can be realized in practical experi-
ments. Such disappearance of the potential barrier under
realizable strength of an electric field has already been
found in the case where an adsorbate is attached on the
jellium [6] and where the chemical interaction between an
electrode and a counterelectrode may be significant [8,15].
Here we would like to emphasize that this phenomenon can
occur by the pure effect of the electric field in field emis-
sion. This is shown in the present calculation for the first
time as far as we know.
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FIG. 1. Effective potential V(z) calculated self-consistently in
the case of r;, = 4 bohr for F = 10 V/nm (solid line) and F =

0 (dashed line). Jellium edge is z = 0. Dotted line (3.13 eV)
denotes the Fermi energy Ep for F = 0.
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In Fig. 2, we show calculated electron densities for
rs = 4 bohr. The electron density profile for F = 0
(dashed line) is nearly the same as that calculated by Lang
and Kohn [16] except for a slight discrepancy caused
by the difference in the adopted exchange-correlation
potential. Both for F = 10 V/nm (solid line) and F = 0,
the electron density changes exponentially in the region
z = ~0-10 bohr. The reason for this feature is that many
electrons with energy Ep are reflected at the jellium-
vacuum interface. From Fig. 2, we can see several differ-
ences between the density profiles for F = 0 and 10 V/nm
as follows. First, in the region z = ~0-10 bohr, the
electron density for F = 10 V/nm becomes higher than
that for F = 0. This contributes mainly to the induced
electronic charge of [&pdz = —0.0886 C/m?, which
agrees well with an estimation for an ideal metal based on
classical electromagnetism, [&8p dz = —0.0885 C/m?.
Next, the magnitude of Friedel oscillation inside the
jellium decreases for F = 10 V/nm. It should be noted
that such a decrease is not clearly seen for higher density
jellium (e.g., ry = 2 bohr). This difference between
the lower and higher density jellium can be caused by
different degrees of the screening capacity.

In Fig. 3, we plot the calculated tunneling probability ¢
of an electron with the energy Er for F = 10 V/nm as a
function of the work function for F = 0, ® [17]. Here re-
sults of the present calculation are denoted by filled circles.
For comparison, we also show 2 calculated on the basis
of the FN theory (solid line) [2] and the corrected FN the-
ory (dashed line) where the image potential is taken into
account [4]. From this figure, we can say that these three
theories give qualitatively similar results: The smaller the
work function, the larger the tunneling probability. How-
ever, quantitative discrepancy among them is significant.
In the present theory, ¢ is considerably smaller than unity
evenif ® < 2.9 eV, where V,,,, is lower than Er, because
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FIG. 2. Electron density distribution in the case of r; = 4 bohr
for F = 10 V/nm (solid line) and F = 0 (dashed line). Note
that p; = 25.2 nm 3.
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of the wave nature of electrons. The FN theory gives a
considerably smaller value of ¢ than that of the present
theory, because the reduction of the potential barrier due
to an applied field is not taken into account. On the other
hand, the corrected FN theory, where the reduction of the
barrier is taken into account in the form of the image po-
tential, gives too large a value of ¢> [18]. In particular,
t? becomes unity in the case of ® = 3.79 eV where Er
equals the maximum of the barrier. This can be attributed
to the fact that the WKB scheme is not valid in this case.

In Fig. 4, the calculated electronic current density j,
is shown in the form of the Fowler-Nordheim plot [1/F
versus log(j./F?)]. As is well known, j. calculated by
the FN theory has a constant slope in the FN plot. On
the other hand, the slope is not constant in the case of
Jj. calculated by the present theory and by the corrected
FN theory, as can be seen in this figure. However, the
present results can be regarded to be aligned in the region
F < 5 V/nm, and the slope of the plot is similar to that
predicted by the FN theory for the corresponding rs. As
well as the FN theory, the slope of the plot predicted by
the corrected FN theory is similar to that predicted by the
present theory for weak fields. As a result, if the zero-field
work function @ is estimated by using the FN plot [19],
the difference between ® estimated by using the present
and the FN theories is less than 10%, even though there
is tremendous quantitative disagreement in the calculated
values of j, [20]. This explains why the work function can
be reasonably estimated by the analyses based on the FN
plot, in spite of the deficiency of the FN theory mentioned
before.

As can be seen in Fig. 4, discrepancy between the
present and the FN theories becomes more significant
even qualitatively, as the electric field becomes larger:
Our theory predicts that the stronger the electric field, the
flatter the slope of the FN plot. In fact, similar nonlinear
behavior of the FN plot has already been reported on the
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FIG. 3. Tunneling probability of an electron having the en-
ergy Er in the case of F = 10 V/nm, calculated by the present
method (filled circles), by the Fowler-Nordheim (FN) theory
(solid line) [2], and by the corrected FN theory (dashed line)
where the image potential is considered [4]. Here the values of
the work function are for F = 0.
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ward. Such an extension is of great use in quantitative
analyses of field emission currents in actual materials, and
will be done in the near future.

We gratefully acknowledge J. Nakamura and T. Eguchi
for fruitful discussions.

*Electronic address: gohda@cello.mm.t.u-tokyo.ac.jp

20 10 5 2.5
N
. \6\\2
S \\\ +
15 TN
+
& N
7] AN
~ 10 o«
Z A
o Y L
Q N\
A N,
N
5 0 N
rs|DFT_FN Ref[4] .
2|0 — ——-
4| o -----
6| + ---
0
0.1 0.2 0.3 0.4

1/F [nm /V]

FIG. 4. The FN plot calculated by the present theory (open and
filled circles for r; = 2 and 4 bohr, respectively, and crosses for
ry = 6 bohr), by the FN theory (solid, dotted, and dash-dotted
lines for r; = 2, 4, and 6 bohr, respectively) [2], and by the
corrected FN theory (dashed line for r; = 2 bohr) [4].

basis of the corrected FN theory with modified image
potential [21]. However, it is of great importance that
the previous results have been confirmed by our self-
consistent method, which does not have any adjustable
parameters and is much more reliable than the WKB
method. Consequently, density functional treatment for
emission currents, such as the present method, is essen-
tially important to analyze field emission in strong electric
fields. It should be noted that this flattening is caused by
several factors such as a finite reflection coefficient, i.e.,
t2 < 1, a finite energy width of emitted electrons, i.e.,
0 < E < Ep, especially for low density jellium (e.g.,
0 < E <1.39eV for ry = 6 bohr), and space charge
effects.

In conclusion, we have developed a fully self-consistent
method which is suitable to examine field emission cur-
rents, on the basis of the density functional theory. By
using this method, we have investigated field emission cur-
rents from a biased metallic surface represented by the jel-
lium model. We have found that the energy barrier between
the jellium and vacuum becomes lower than the Fermi en-
ergy under strong electric fields. In this situation, finite
reflection of ballistic electrons causes the flattening of the
FN plot. It should be noted that an extension of the present
method to include realistic atomic structures is straightfor-
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