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Probing Pauli Blocking Factors in Quantum Pumps with Broken Time-Reversal Symmetry
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A recently demonstrated quantum electron pump is discussed within the framework of photon-assisted
tunneling. Because of lack of time-reversal symmetry, different results are obtained for the pump current
depending on whether or not final-state Pauli blocking factors are used when describing the tunneling
process. While in both cases the current depends quadratically on the driving amplitude for moderate
pumping, a marked difference is predicted for the temperature dependence. With blocking factors the
pump current decreases roughly linearly with temperature until kBT � h̄v is reached, whereas without
them it is unaffected by temperature, indicating that the entire Fermi sea participates in the transport.

PACS numbers: 73.50.Pz, 72.40.+w, 73.20.Dx, 73.40.Gk
Tunneling of electrons through classically forbidden re-
gions is one of the major paradigms of quantum mechan-
ics. Although our understanding has greatly improved over
the past decades, some vital aspects of this process are
still subject to fierce debates. For example, no consensus
has been reached yet whether so-called final-state blocking
factors exist in the tunneling process across a barrier sand-
wiched between two conductors (Fig. 1) to enforce Pauli’s
exclusion principle that no two electrons may occupy the
same quantum state. This seemingly innocent question is
related to the question where in the so-called Fermi sea of
conducting electrons the current actually flows, and thus
has far-reaching consequences for our understanding of
quantum transport. There are two schools on how to calcu-
late the tunnel current, one that insists on using the block-
ing factors and another that rejects them [1]. The dilemma
is that both schools almost always seem to give identical
answers for the current. In this Letter we point out that this
result is fundamentally related to time-reversal symmetry,
and study a generic system where this symmetry is broken
to gain insight into the nature of blocking factors.

Consider a tunneling barrier impeding the current flow
as depicted in Fig. 1. According to the first school, we start
by calculating the coherent scattering states of the system
consisting of an incident plane wave, a reflected wave, and
a transmitted wave on the far side. These scattering states
travel either from left to right or the opposite way. In the
stationary limit they can simply be populated according to
distribution functions fL and fR governing the asymptotic
contact regions on either side. This yields for the current
[1]

IS �
2e
h

Z
dE dE0 D�T1�E0, E�fL�E�

2
2e
h

Z
dE dE0 D�T2�E, E0�fR�E0� , (1)

where D� is a density-of-states factor [2]. T1�E0, E� is
the transmission probability for scattering states incident
from the left at energy E and emerging at the right at E0

(fi E in general), and T2 is defined in a similar manner for
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the reverse direction. According to Eq. (1) all scattering
states contribute to the current, even those far below the
Fermi surface—as recently discussed for the Fermi pump
[3]. It is only when the transmission probabilities are
symmetric, T1�E0, E� � T2�E0, E�, that the net current
seems to stem from electrons in the immediate vicinity of
the Fermi surface only, as in this case all electrons further
down cancel each other.

An alternative and widely used recipe for calculating
the tunneling current in Fig. 1 is based on the transfer-
Hamiltonian formalism, originally put forward by Oppen-
heimer [4], and later refined by Bardeen and others [5].
Here the system is split into two subsystems, the left- and
the right-hand sides, with a common overlap in the cen-
tral barrier region, and the result for the current can be
expressed as

IP �
2e
h

Z
dE dE0 D�T1�E0, E� �1 2 fR�E0�� fL�E�

2
2e
h

Z
dE dE0 D�T2�E, E0� �1 2 fL�E�� fR�E0� ,

(2)

which differs from Eq. (1) by the Pauli blocking factors
1 2 f. These factors are introduced—more or less
ad hoc—using the intuitive argument that an electron
tunneling from one side to the other needs to find an
empty final state on the far side to tunnel into [6].

FIG. 1. Single-barrier scattering state with transmitted and
reflected amplitudes, populated according to a distribution
function fL characterizing the left side. In the Pauli picture, the
tunneling probability incurs an additional final-state blocking
factor 1 2 fR on the right.
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Clearly, the philosophies underlying Eqs. (1) and (2) are
entirely different: For the former we assume that the left-
and right-hand sides of the barrier belong to the same sys-
tem and that the scattering state extends coherently across
the barrier, whereas in the latter we consider real incoher-
ent transitions between initial and final states on opposite
sides of the barrier belonging to different subsystems [7].
Both views have their merits. Certainly in the limit of a
very transparent or even vanishing barrier, one has to re-
gard both sides of the barrier as part of the same system,
in which case there is no place for blocking factors. But
equally well, if tunneling is weak, one can argue that the
two sides do form two different subsystems, and that final-
state blocking factors are mandatory to guarantee Pauli’s
exclusion principle and to prevent an “overflow” of the fi-
nal state.

Crucially, this analysis also appears to a system with lo-
cal time-dependent driving forces as its leads, and hence
the distribution of incident electrons, are not affected by
the driving field. For a system with time-reversal symme-
try, it can be shown that the transmission probabilities are
such that any channel E $ E0 is traversed with the same
probability in either direction, i.e., that microreversibility
holds, T1�E0, E� � T2�E, E0�. Under this condition the
cross terms fLfR arising from the Pauli blocking factors
cancel and Eqs. (1) and (2) yield identical answers for the
total current, which is the quantity usually measured in ex-
periment. It is probably because of this indecisive result
that both schools have coexisted for so long. The only dif-
ference between the two is their prediction where in the
Fermi sea the current flows: With blocking factors, the
current is forced to flow close to the Fermi surface, as in
this picture lower-lying final states are blocked, while in
the formulation based on scattering states the current flows
in the entire Fermi sea.

However, if time-reversal symmetry does not hold,
Eqs. (1) and (2) yield different answers even for the
magnitude of the current itself as the cross terms do not
cancel any longer. This is very intriguing as it gives
us hope to come closer to an experimentally verifiable
answer regarding the existence of Pauli blocking factors.

Our analysis is inspired by a recent experiment by the
Marcus group [8]. A semiconductor quantum dot with
source and drain point contacts has two additional lateral
gates to which ac voltages of relative phase f are applied
[see Fig. 2(A)]. Time-reversal symmetry is broken unless
f is an integer multiple of p . Averaging over different
dot configurations, they measured fluctuations of the emf
voltage generated between the source and drain contacts.
Previous theoretical studies employed the concept of adia-
batic pumping [9]. We take a complementary perspective
and view the pump current (which exists even in the ab-
sence of any applied source-drain bias) as due to photon-
assisted tunneling [10].

As a model system of a driven dot strongly coupled to its
leads we consider two harmonically oscillating d-function
FIG. 2. Quantum-dot pump with broken time-reversal symme-
try. (A) Schematic drawing; (B) simple 1D model based on
driven d-function barriers.

barriers of equal strength Vac a distance d apart in a 1D
potential, with a variable phase difference f in the ac sig-
nals as depicted in Fig. 2(B) [11]. This is a very simplified
model of the Marcus pump, but nevertheless it turns out to
exhibit many of its characteristic properties. For calculat-
ing the transmission probabilities T �E0, E� across the dot
we take advantage of the fact that we can split this problem
into two parts: If we know the transmission and reflec-
tion amplitudes for each barrier separately, we can use the
Fabry-Pérot method of ray tracing known in optics to cal-
culate the interference pattern due to multiple reflections
between the barriers. As in optics the partial interference
amplitudes can be summed up to all orders in a geometric
series, yielding for the transmission amplitudes at the far
side [12]

t � tR�I 2 K�21QtL, (3)

where K � QrLQrR describes one full round trip of the
electron between the two barriers L and R, starting and
ending at the R barrier. Each round trip an electron at
energy En � E 1 nh̄v picks up a phase factor Qn �
exp�i�knd 1 u�� consisting of two parts: The phase knd
incurred after traveling a distance d with wave vector kn �p

2mEn�h̄ and a fixed but unknown phase u. This latter
phase is introduced to account for the random changes in
magnetic field and dot geometry employed in the experi-
ment to perform ensemble averages. In general, the phase
u depends on the electron energy, but for simplicity we
ignore this and assume u to be equally distributed. Under
this condition ensemble averaging simply means averaging
over u at the end of the calculation.

Because of the discreteness of the photon energy, elec-
trons emerge on the far side of the barriers at energies
differing from their original energy E by multiples of h̄v:
E0 � E 1 nh̄v, the so-called sidebands. Consequently,
all amplitudes in Eq. (3) have to be interpreted as ma-
trices, and the transmission probability takes the form
T �E0, E� �

P
n T̃n�E�d�E 1 nh̄v 2 E0�.

Before presenting numerical results for strong
driving, it is instructive to study the weak-driving
limit, which can be solved analytically. Defining
Te�k, w� � h2�k0�4k� cos2�d�k0 1 k��2 1 w�2� where
h � Vack0�E0 is the dimensionless pump amplitude and
k0 the wave vector of the incident electron, we obtain for
175
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FIG. 3. Dependence of �I2
S	1�2 on the phase shift f for

weak and strong driving fields. Parameters: d � 0.2 mm,
f � 10 MHz, m � 0.067m0, EF � 12 meV, T � 0.1 K.

the transmission probabilities in the first three sidebands
up to h2 [13]

T̃1
0 �f, u� � 1 1 Te�2k1, 2f� 1 Te�2k21, f�

2 Te�k1, 2u 2 f� 2 Te�k21, 2u 1 f� ,

T̃1
61�f, u� � 2Te�2k61, 7f� . (4)

The corresponding transmission probabilities T̃2
n for the

reverse direction are obtained by substituting �f, u� !
�2f, u�. As expected, the net transmission probabil-
ity T̃net � T̃1 2 T̃2 vanishes for f � np when time-
reversal symmetry holds, and is maximal at f � p�2. In
agreement with experimental findings, the pump current
at zero dc bias, being proportional to T̃net, scales with h2

for weak driving. In the experiment the photon energy is
6 orders of magnitude smaller than the Fermi energy. Ex-
panding Eq. (4) in this limit the current turns out to be
linear in the driving frequency, in perfect agreement with
the experimental results available [14].

After integrating over u the ensemble average �T̃net	 is
found to be identically zero up to order h2. This implies
that the direct current �I	 is orders of magnitude smaller
than its fluctuations for all but the strongest driving fields,
and hence we will concentrate on the mean square av-
erage �I2	1�2 to study the fluctuations instead [15]. Fig-
ure 3 shows the dependence of �I2

S	1�2 on the phase shift
f, where we have used Eq. (3) with an adaptive number
of photon sidebands to determine the full nonlinear trans-
mission probability, and Eq. (1) to finally calculate the
current. For small driving amplitudes we find a sinf be-
havior in agreement with Eq. (4), while for stronger driv-
ing nonharmonic features appear, both of which are in
qualitative agreement with experiment. A similar behav-
ior is observed when using the formula (2) based on Pauli
blocking factors instead, except that in this case the pump
current is much smaller.

For the remainder of this Letter we will fix the ac phase
shift f to p�2, the point of maximal time-reversal asym-
metry. The current fluctuations �I2

S�p�2�	1�2 calculated us-
ing the formula (1) without blocking factors are illustrated
in Fig. 4 as a function of h, taken at the Fermi surface.
For small driving amplitudes up to h � 0.05 the fluctua-
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FIG. 4. �I2
S�p�2�	1�2 and �V 2

S �p�2�	1�2, both based on Eq. (1),
as a function of the driving strength Vac for a range of
temperatures.

tions increase quadratically with h as suggested by Eq. (4)
before eventually starting to decrease. In the Marcus ex-
periment, rather than measuring the pump current, the emf
voltage generated was studied. Defining the emf voltage
as the difference in chemical potentials between the left
and right leads necessary to make the pump current vanish,
we find that its fluctuations, also shown in Fig. 4 (right-
hand axis), have virtually the same dependence on h as
the current fluctuations. Both the quadratic rise as well as
the leveling off for stronger pumping have been observed
in experiment. The maximal emf fluctuations generated,
15 nV, is only 1 or 2 orders smaller than in the experiment,
which is a quite reasonable agreement given the simplicity
of the model.

The corresponding results based on the alternative for-
mula (2) for the current which does include the Pauli block-
ing factors are illustrated in Fig. 5. Similar to the case
without blocking factors of Fig. 4, the current fluctuations
�I2

P�p�2�	1�2 (as well as the emf fluctuations, not shown)
display an h2 behavior first before eventually starting to
saturate. Yet, not only do the magnitudes of these results
differ substantially from Fig. 4 for the same driving am-
plitude, but now there is a very pronounced temperature
dependence as well.
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FIG. 5. �I2
P�p�2�	1�2, based on Eq. (2), as a function of the

driving strength Vac for a range of temperatures.
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FIG. 6. Temperature dependence of �I2�p�2�	1�2 with and
without Pauli blocking factors.

This temperature dependence is worked out in more de-
tail in Fig. 6 using a fixed driving strength of h � 0.47.
While without Pauli blocking factors the variation with
temperature is minimal, an almost linear dependence is
observed when they are included. This distinctly differ-
ent behavior in the low-temperature regime is most easily
understood when looking at the number of states in phase
space effectively available for transport: The blocking fac-
tors force the current to flow within a few kBT of the Fermi
surface (see Fig. 1), and as the temperature approaches
zero, this range of active current-carrying states eventu-
ally diminishes to a minimal width of a few h̄v, which in
the experiment is much smaller than kBT . However, since
each state can carry only a certain maximal load, it follows
that the pump current must also decrease with tempera-
ture, until it settles for a residual value once kBT � h̄v is
reached—with our parameters at �0.5 mK. On the other
hand, without blocking factors there are no phase-space
restrictions, in which case the pump current flows in the
entire Fermi sea and thus is largely immune to changes at
the Fermi surface brought about by temperature.

In the Marcus experiment the pump current is found to
increase when lowering the temperature, and appears to
level off at �0.1 K, where phase-breaking events become
less important [8]. Such events are not included in our the-
ory, and we can therefore not expect to reproduce the high-
temperature behavior. However, the experimental finding
of a saturated pump current in the low-temperature limit
is (if genuine and not due to thermal decoupling) consis-
tent only with our results based on the scattering-state ap-
proach, Eq. (1), but not with the formulation relying on
Pauli blocking factors, i.e., Eq. (2).

Being able to prove the (non)existence of Pauli blocking
factors has drastic consequences for deciding whether
the current flows in the entire Fermi sea or at its surface
only. In this Letter we have demonstrated that a powerful
tool for studying this issue is to look at the tempera-
ture dependence of the pump current when breaking
time-reversal symmetry. Although our model system
is simple, the conclusions about the low-temperature
behavior, being drawn from phase-space considerations,
are clearly of a much more universal nature.
The author acknowledges discussions with B.
Alphenaar, H. Linke, and C. Marcus and support by
the EU (FMRX-CT98-0180).

Note added.—The author recently became aware of an-
other relevant work on Pauli blocking factors [16].
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