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Supercurrent in Atomic Point Contacts and Andreev States
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We have measured the supercurrent in @uminum atomic point contacts containing a small number
of well characterized conduction channels. For most contacts, the measured supercurrent is adequately
described by the opposite contributions of two thermally populated Andreev bound states per conduction
channel. However, for contacts containing an almost perfectly transmitted channel 0.9 = 7 =< 1 the
measured supercurrent is higher than expected, afact that we attribute to nonadiabatic transitions between

bound states.

PACS numbers: 73.40.Jn, 73.20.Dx, 74.50.+r

In 1962, Josephson predicted that a surprisingly large
supercurrent could flow between two weakly coupled
superconducting electrodes when a phase difference
6 is applied across the whole structure. This phase-
driven supercurrent I(6) has subsequently been ob-
served in a variety of weak coupling configurations
such as thin insulating barriers, narrow diffusive wires,
and ballistic point contacts between large electrodes.
However, a theoretica framework powerful enough to
predict the current-phase relation 7(8) in al configu-
rations has emerged only during the last decade [1].
It applies in the mesoscopic regime, when electron trans-
port between the electrodes is a quantum coherent process.
Such transport is described by a set of N transmission co-
efficients {7;} corresponding to N independent conduction
channels. In the normal state, the conductance is given
by Go> N, 7 where G, = 2¢2/h is the conductance
guantum. In the superconducting state, electrons (holes)
transmitted in one channel are Andreev reflected at the
electrodes into holes (electrons) in the same channel.
After a cycle involving two reflections at the electrodes,
they acquire at the Fermi energy an overall phase factor
7 + 6 (Fig. 1). In a “short” coupling structure, these
cycles give rise to two electron-hole resonances per chan-
nel, called Andreev bound states (AS) [2] with energies
E-(8,7) = =A[l — 7;5n%(6/2)]"/% (A is the energy
gap in the electrodes). These two AS carry current in op-
posite directions, 1+(5,7) = ¢o ' dE+(5,7:)/d5 (where
oo = hi/2e), and the net supercurrent results from the
imbalance of their populations. A quantitative comparison
of the predictions of this “mesoscopic superconductivity”
picture of the Josephson effect with experimental results
is usually hindered by the fact that in most devices the
current flows through a very large number of channels
with unknown 7;. However, an atomic-size constriction
between two electrodes, referred to hereafter smply as an
atomic contact [3], is an extreme type of weak coupling
structure which accommodates just a few channels. Be-
cause their set {r;} is amenable to a complete experimental
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determination and because it can be controlled in a certain
range [4], atomic contacts are ideal systems on which to
test quantitatively the concepts of mesoscopic physics.
The knowledge of {r;} alows in principle the calculation
of all transport quantities. In particular, the phase-driven
supercurrent is given by

N
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where n;+ are the occupation numbers of the two AS
associated with the ith channel. The critical current of
the contact is the maximum of this current-phase rela-
tionship at zero temperature Iy({7;}) = maxs[1;(5,{r:},
ni+ = 0,n;— = 1)].  In this Letter, we present an
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FIG. 1. (a) Josephson coupling through a single channel
of transmission 7 between two superconducting electrodes
with phase difference 6 = ¢, — dr. Wavy lines repre-
sent Andreev scattering mechanism: electrons (holes) are
reflected as holes (electrons) at the electrodes. Upward and
downward arrows represent normal scattering, which couples
electron (hole) states with backward electron (hole) states.
(b) Combination of both scattering mechanisms results in two
“Andreev bound states” with phase dependent energies E-
(full lines). Gap at 6 = 7 is 2A\/1 — 7. P is interlevel
nonadiabatic transition probability aa 6 = 7. Dash-dotted
(dotted) line is B_.(B—) balistic state for = = 1, carrying
current towards the right (left).

© 2000 The American Physical Society



VOLUME 85, NUMBER 1

PHYSICAL REVIEW LETTERS

3 JuLy 2000

experiment on auminum atomic contacts in which we
compare the measured supercurrent with the predictions
of this mesoscopic Josephson effect theory.

In practice the measurement of a supercurrent is not
done by imposing a phase difference across the device
[5] but by biasing it with a dc current and detecting the
maximum current at zero voltage. As the Josephson cou-
pling introduced between the two electrodes by a single
channel of transmission = has a small characteristic en-
ergy E; = @olo(7) = @olo(r = 1) = A/2 (for Al E; =
1kgK), the phase difference § is prone to both quantum
and thermal fluctuations, which depend not only on the pa-
rameters of the contact but also on the circuit in which the
contact is embedded. In fact, unless this electromagnetic
environment is carefully designed so as to damp phase
fluctuations [6], the supercurrent time averages to nearly
zero and the observed maximum supercurrent is much
smaller than I, [3]. We have thus integrated microfab-
ricated mechanically controllable break junctions [7] into
an adequate on-chip dissipative environment (see Fig. 2).
Current-voltage characteristics (IV) were measured using
afour-probe geometry. Each line contains a small resistor
close to the atomic contact, and also a large capacitor to
the underlying ground plane formed by the substrate. The
equivalent circuit of the setup is shown in the right inset
of Fig. 2. The atomic contact is characterized by (1) and

FIG. 2. Micrograph of Al microbridge in a dissipative envi-
ronment. Each IV probe contains a AuCu (weight ratio 3:1) re-
sistor (10 wm-long, 500 nm wide, and 30 or 50 nm thick) and
alarge (2.5 mm)?, 180 nm thick AuCu/Al pad (not shown) that
forms with the metallic substrate a large capacitor. Substrate is
phosphor-bronze covered by a2 wm thick layer of polyimide.
Left inset: side view of bridge (150 nm thick Al layer with
100 nm wide constriction in the middle) suspended by selective
etching of polyimide. Bridge is broken by controlled bend-
ing of the substrate at low temperatures (77 < 1 K) and under
cryogenic vacuum to prevent contamination of the two resulting
electrodes. Right inset: equivalent circuit. The atomic con-
tact (double triangle symbol) is connected to a current source
through a resistor R. The capacitors on each line combine into
the capacitor C. Total capacitance between the two sides of the
bridge is C,;. The voltage V across the contact is related to the

phase velocity through the Josephson relation ¢¢6 = V.

its capacitance Cj. It is connected through a resistor R to
a current source I, in parallel with a capacitance C. We
now concentrate on one-atom aluminum contacts which
typically accommodate three channels and have a conduc-
tance of order Gy [4]. A typical IV measured at the lowest
temperature is shown in Fig. 3. The strong nonlinearities
in the finite voltage (dissipative) branch are associated [8]
with multiple Andreev reflection processes and alow the
determination of {7;} [4]. The supercurrent branch appears
on large voltage scales as a vertica lineat V ~ 0. How-
ever, the upper inset of Fig. 3 shows that for finite current
there is always a finite voltage across the contact. When
the bias current is ramped repeatedly, the system switches
to the dissipative branch at avalue I which fluctuates from
cycle to cycle. The slope of the supercurrent branch and
the average switching current (/) both decrease when in-
creasing the temperature.

Given the simplicity of the biasing circuit, the exact
shape of the supercurrent branch can be calculated. Fol-
lowing the analysis of [6] the circuit is described by two
dynamical variables, § and u (the ratio between the voltage
across the capacitor C and R1,), and three environment pa-
rameters. acharacteristictimes; = ¢o/RI, and the damp-
ing factors ey = ¢o/R*1yC; and @ = R?Cly/ ¢y. For al
the measured contacts the environment parameters were
chosen such that «¢ > 1 [9], and the current through C,
can thus be neglected. In this classical regime, the time
evolution of the circuit is governed by two dimensionless
equations,
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FIG. 3. Large scale IV characteristic of atomic contact, mea-
sured at 17 mK (dots). Switching at current I, from super-
current branch (almost vertical branch near zero voltage) to
dissipative branch is a stochastic process. Full line is the best
fit of this branch, obtained by decomposing the total current
into contributions of 3 independent channels, giving {r;} =
{0.52,0.26,0.26} and I, = 25.3 = 0.4 nA. Top inset: expanded
view of experimental (dots) and theoretical (lines) diffusion
branch at 370 mK (thick dashed line shows negative differen-
tial resistance region). Bottom inset: I, histogram measured at
T =17 mK and dI/Iydt = 581 s~ 1.
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Here, time is in units of ¢, i;(8) = 1;(8)/1y, and i}, =
1,/Iy. The thermal current noise source i,(¢) associated
with the resistor obeys the fluctuation-di ssipation theorem.
If R and C are large enough to achieve a > 1 (keeping,
however, R < h/4e” to avoid quantum fluctuations of &
[10]), thetime evolution of u ismuch slower than that of 6.
One then first solves (2) with a constant « and afterwards
solves (3) for the slower dynamics of u. The first step
is equivalent to solving the resistively shunted junction
model [11] with a voltage source u. Asin the well-known
case of tunnel junctions, the dynamics of the phase in this
circuit is equivalent to the Brownian motion of a massless
particle in atilted washboardlike “potential,” governed by
the Langevin equation (2). However, here the potential
is not the usua tilted sinusoid but has instead the more
general form [12]
Up=—ué + D (ni+ — ni-)E_(8,7;), 4
i=1
which depends on {r;} and the time dependent n; - . Several
mechanisms can make these n;+ change, but in genera
none is very efficient. The relaxation induced by phonons
has been addressed in [13]. We have found that the relax-
ation of the upper state through the emission of photons
in the environment is extremely slow except for highly
transmitted channels at 6 ~ 7 [14]. However, relaxation
by the exchange of quasiparticles with states in the bulk
electrodes can be very fast, but only at 6 = 0 (Fig. 1). We
have solved (2) by making a straightforward generalization
of the procedure introduced by Ambegaokar and Halperin
[15] for overdamped tunnel junctions. In this adiabatic
model the* particle” movesin aconstant potential obtained
by replacing in (4) the n;~ by their thermal equilibrium
values at 6 = 0 [16].

The upper inset of Fig. 3 shows a comparison of the
measured supercurrent branch for a particular contact with
the predictions of this adiabatic model. The supercurrent
branch is, in fact, a current peak. The equivalent particle
is constantly thermally activated over the potential barriers
between the wells and undergoes a classical diffusion mo-
tion with a small, friction-limited drift velocity. The only
inputs of the calculation are the temperature, R, and the
measured values of {7;}, which determine the zero tem-
perature supercurrent Iy [17]. The value of R, which is
measured independently, sets only the voltage scale of the
supercurrent peak. In our RC biasing scheme, which keeps
the atomic contact unshunted at dc, the negative differen-
tial resistance region of the IV is unstable, and the sys-
tem switches to the dissipative branch before reaching the
maximum I, Of the current peak. The capacitor was de-
signed large enough (C = 140 pF) for al the samples to

N
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FIG. 4. Experimental (open symbols) and theoretical (lines)
average switching current (/) as a function of temperature for
different contacts on two samples. (V) {r;} = {0.21,0.07,0.07},
Ip =80 * 0.1 nA [17]. () {r;} = {0.52,0.26,0.26}, Iy =
25.3+0.4 nA. (o) {r;}={0.925,0.02,0.02}, Iy =33.4*=0.4 nA.
(A) {7,}=1{0.95,0.09,0.09,0.09}, [, =38.8 = 0.2 nA. (O) {r;}=
{0.998,0.09,0.09,0.09}, I, = 44.2 + 0.9 nA. Contacts (V),
(), (A), and (O) from sample with A/e = 178 £ 1 uV,
R =125+ 10 Q. Contact (o) from sample with A/e =
1845 = 1.0 uV,R = 170 =20 Q. Full lines (with solid
symbols): predictions of adiabatic theory for @ — oo, for which
(I;) — Imax. Dashed line: finite o corrections for contact (V).
Dash-dotted line: predictions of adiabatic theory for contact
(0), assuming the highest transmitted channel to be ballistic.
Dotted lines: predictions of extended model including empirical
interlevel nonadiabatic transition probability P a 6 = 7
(P = 0.4 for upper curve, P = 0.15 for lower one). Inset:
probability P as a function of transmission coefficient 7, of
highest transmitted channel for different contacts displaying
extra supercurrent. Symbols are best fits values from simulation.
Dotted line is guide for the eye.

bein the overdamped limit & > 1, inwhich case [, ispre-
dicted to be close to I. The fluctuations of I, are also
small, as shown by the narrow switching current histogram
in the bottom inset of Fig. 3.

The temperature dependence of (/) measured for five
contacts is shown in Fig. 4 together with the predictions
of the adiabatic model sketched above. For every contact
having all channels such that 7; < 0.9 the @ — oo limit
of the theory describes well the data at high temperature.
Moreover, in the case of very low 7, finite « corrections
can be calculated [6] and explain the small deviations at
intermediate temperatures. We attribute the remaining low
temperature deviations to the saturation of the electronic
temperature in the resistors [18]. The uppermost data
points in Fig. 4 correspond to a contact in which one of
the channels had 7 = 0.998. The measured (/) are larger
than predicted by the adiabatic theory for this 7. How-
ever, if we assume this channel to be perfectly transmitted
(7 = 1), areasonable assumption given our accuracy inthe
determination of the 7’s, we recover avery satisfactory fit
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of the data. Thisisdue to the fact that this small changein
7 has a profound impact on the shape of the potential. For
7 = 1 the AS singularly become the ballistic B~ states
(Fig. 1), which have no extremaa 6§ = 7. In this case
the current flows aways in the same direction, thus lead-
ing to amuch larger average value. For contacts having at
|east one channel with 7; = 0.9, but definitely not ballistic
within the experimental accuracy, the measured (/) isaso
larger than the predictions of the adiabatic theory, which
corresponds in principle to the maximum observable (/).
A possible explanation of this excess supercurrent could
be the existence of transitions between the adiabatic E-+
states (Fig. 1), induced by the fast dynamics of &. In the
case of an amost perfectly transmitted channd (r = 1),
the energy gap 2A+/1 — 7 a 6 = = isvery small. If the
system startsa[6 : 0 — 2] cycle in the lower adiabatic
state E_, there is a finite probability P for finding it in
the excited adiabatic state £ after § has diffused across
the region around 7 at finite speed (Fig. 1). For alarge
P the system would follow most of the time just the bal-
listic state B_., making the time-averaged supercurrent re-
sistant to thermal fluctuations, as observed experimentally.
Note that this strong nonequilibrium occupation of the AS
marks the uprising of the dissipative current [19]. We have
extended our model in a minimal way by adding to the
boundary conditions of thermal equilibrium at 6 = 0, the
possibility of interlevel transitionsat 6 = 7, with an em-
pirical, temperature independent probability P. As shown
in Fig. 4, this modified model allows fitting the experi-
mental data reasonably well. The inset of Fig. 4 shows
the best-fit value of P obtained using this procedure, as a
function of the 7 of the highest transmitted channel. We
note that the standard Landau-Zener theory [19] predicts
much too small values of P given the small drift velocity
of the phase. In fact, the Landau-Zener theory is not di-
rectly applicable to the present situation in which the phase
is not an external parameter swept at a constant rate, but is
instead a dynamical variable undergoing a driven diffusive
motion. A rigorous theory of this dissipative nonadiabatic
mechanism, valid for arbitrary transmission, remains to be
developed for our system, along the lines of [20] or [21],
for example.

In conclusion, superconducting atomic contacts can sus-
tain supercurrents close to that predicted solely from their
mesoscopic transmission set. The value of the supercurrent
is thus related to the dissipative branch of the IV char-
acteristics, like in usual macroscopic Josephson junctions,
athough in the latter the contribution of the different chan-
nels cannot be disentangled. More generally, our findings
strongly support the idea of the supercurrent being carried
by Andreev bound states and show that the concepts of
mesoscopic superconductivity can be applied down to the
level of single atom contacts.
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