
VOLUME 85, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 21 AUGUST 2000

1682
Does Hard Core Interaction Change Absorbing-Type Critical Phenomena?
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It has been generally believed that hard core interaction is irrelevant to absorbing-type critical phenom-
ena because the particle density is so low near an absorbing phase transition. We study the effect of hard
core interaction on the N-species branching annihilating random walks with two offspring and report
that hard core interaction drastically changes the absorbing-type critical phenomena in a nontrivial way.
Through a Langevin equation-type approach, we predict analytically the values of the scaling exponents,
n� � 2, z � 2, a � 1�2, and b � 2 in one dimension for all N . 1. Direct numerical simulations
confirm our prediction. When the diffusion coefficients for different species are not identical, n� and b

vary continuously with the ratios between the coefficients.

PACS numbers: 64.60.– i, 05.40.–a, 05.70.Ln, 82.20.Mj
The study of nonequilibrium systems with trapped (ab-
sorbing) states has been very active in recent years [1].
Models displaying absorbing phase transitions describe a
wide range of phenomena, for example, epidemic spread-
ing, catalytic chemical reactions, surface growth, wetting
and roughening, self-organized criticality, and transport in
disordered media [1,2]. Furthermore, the absorbing tran-
sition is one of the simplest and natural extensions of the
well-established equilibrium phase transition to nonequi-
librium systems, which are still poorly understood.

The concept of universality, which plays a key role
in equilibrium critical phenomena, was shown to be
applicable also to nonequilibrium absorbing transitions.
Critical behavior near an absorbing transition is deter-
mined by properties such as dimensionality and symmetry
and is not affected by details of the system. Finding a
new universality class is difficult, and only a few classes
of absorbing transitions are known [1].

Hard core interaction between particles or kinks has
been believed to be irrelevant to absorbing-type critical
phenomena, because the particle density is so low near
an absorbing transition that the probability of multiple
occupations at a site should be too small to be significant.
This conventional belief leads to recent successes of field
theoretical techniques using bosonic-type operators [3–7].
However, it is well known that hard core interaction does
change the asymptotic decay behavior of the particle
density in many multi-species diffusion-reaction models
near an annihilation fixed point [8]. Since many ab-
sorbing transition models can be mapped onto diffusion-
reaction ones, it may seem natural to ask a question
whether hard core constraint changes the absorbing-type
universality classes in multi-species models. Despite re-
cent efforts using fermionic formulation incorporating hard
core interactions [9,10], the effect of hard core interactions
is barely understood both analytically and numerically.

In this Letter, we study the N-species branching annihi-
lating random walks with two offspring [N-BAW�2�], in-
0031-9007�00�85(8)�1682(4)$15.00
troduced recently by Cardy and Täuber [7]. The model was
solved exactly for all N . 1, using renormalization group
techniques in bosonic-type formulation which ignores hard
core interactions. We employ a Langevin equation-type
approach incorporating hard core interactions and predict
analytically the values of critical exponents associated with
the absorbing transition. It turns out that the hard core in-
teraction drastically changes the universality class in a non-
trivial way and the critical exponents vary continuously
with the ratio of diffusion constants of different species.
Our predictions may not be exact due to the approximate
nature of the Langevin equation approach, but direct nu-
merical simulations confirm our predictions.

The N-BAW�2� model is a classical stochastic system
consisting of N species of particles, Ai �i � 1, . . . , N�.
Each particle diffuses on a d-dimensional lattice with
two competing dynamic processes: pair annihilation and
branching. Pair annihilation is allowed only between
identical particles �Ai 1 Ai ! [�. In the branching
process, a particle Ai creates two identical particles in its
neighborhood �Ai ! Ai 1 2Aj�, with rate s for i � j
and rate s0��N 2 1� for i fi j.

For N � 1, this model exhibits an absorbing tran-
sition of directed Ising-type (Z2 symmetry) at a finite
branching rate [11–14]. The N-species generaliza-
tion imposes the permutation symmetry SN between
species. Like in the Potts-type generalization of the
absorbing transition models [15], this model for N . 1
is always active except at the annihilation fixed point of
zero branching rate.

Critical properties near the annihilation fixed point have
been explored exactly by Cardy and Täuber for N . 1
in the framework of bosonic field theory [7]. The upper
critical dimension dc is 2. Using a perturbation expansion,
they showed that the branching process associated with s

is irrelevant. For s � 0, it was found that the models for
all N . 1 are active for s0 fi 0 and their scaling behavior
near the annihilation fixed point (s0 � s0

c � 0) forms a
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new universality class independent of N . For d , dc, the
critical behavior is characterized by the exponents

n� � 1�d, z � 2, a � d�2, b � 1 . (1)

Here, the exponents are defined as

j � D2n� , t � jz ,

r�t� � t2a , rs � Db ,
(2)

where D � s0 2 s0
c, j is the correlation length, t the

characteristic time, r�t� the particle density at time t, and
rs the steady-state particle density.

Even in the presence of a hard core interaction, the
scaling exponents a and z should follow from the simple
random walk exponents; z � 2 and a � d�z for d , dc

[4]. Near the annihilation fixed point, elementary scaling
theory ensures b � n�za, which leads to b � n�d. We
determine the value of n� through a Langevin equation-
type approach.

The particle density can change by branching processes
and pair annihilation processes. If we start with a con-
figuration of very low particle density, the particle density
initially grows by branching processes, �Ai ! Ai 1 2Aj�.
In this growth regime, a newly created pair of offspring
and its parent are far more likely to annihilate against each
other than other particles in the system. Dynamics of such
three particle configurations or “triplet” governs the growth
behavior of the particle density and the inter-triplet inter-
actions can be ignored. The particle density growth will
be finally capped by pair annihilations processes of inde-
pendent particles and the system reaches a steady state.

We focus on the growth regime dominated by triplet dy-
namics, from which n� can be evaluated [7]. We consider
only the case of s � 0, where a newly created pair is
always dissimilar to its parent. The survival probability
S�t� of the triplet of the same species decays much faster
(�t23�2) than that of different species, so the branching
process associated with s is irrelevant. Near s0 � 0, the
time evolution of the particle density of the ith species,
ri�t�, is written as

dri

dt
� 2

s0

N 2 1

X
jfii

∑
rj�t� 2

Z t

0
Lij�t 2 t0�rj�t0�dt0

∏
,

(3)

where Lij�t 2 t0�dt is the probability that an ith-species
pair created by a jth-species particle at time t0, annihilates
in an interval between t and t 1 dt. The two terms in the
right-hand side represent the creation and annihilation pro-
cess of a triplet, respectively. Pair annihilation contribution
from independent particles is O � r2�, which is ignored in
the growth regime [16].

The kernel Lij�t� is simply related to the sur-
vival probability Sij�t� of the triplet �Aj 1 2Ai� as
Lij�t� � 2dSij�t��dt. To keep the lowest order of s0 in
Eq. (3), we evaluate Sij�t� at s0 � 0. When hard core
interaction is not present, a pair of Ai’s does not see
its parent Aj , so annihilate each other freely by random
walks. In that case, it is well known that S�t� � Sij�t� de-
cays asymptotically as S�t� � t2d with d � 1 2 d�2 for
d , 2 and becomes finite (d � 0) for d . 2, irrespective
of their diffusion constants [17]. However, with hard core
interaction, the pair annihilation process changes signifi-
cantly due to an effective bias in the diffusive behavior,
generated by the parent particle Aj . The motion of Ai

near Aj picks up a convective component with velocity
proportional to t21�2, so the convective displacement is of
the same order of diffusive displacement t1�2. In this case,
the competition between the convection and diffusion
becomes nontrivial and the scaling exponent d depends
continuously on the parameters of the system [18].

We calculate the survival probability S�t� of a triplet in
one dimension. With hard core interaction, S�t� depends
crucially on where to create two offspring with respect
to their parent. When two offspring are divided by their
parent (static branching) [13], they have no chance to meet
each other. The survival probability never decays (d � 0).
When two offspring are placed both to the left side or both
to the right side of the parent particle with equal probability
(dynamic branching) [13], S�t� decays with a nontrivial
scaling exponent.

Consider three random walkers on a line, labeled as A,
B, and C. A is a parent particle that created two offspring,
B and C, to the right side of A. Two offspring B and
C are of the same species, which is different from their
parent A. Hard core repulsion is present between A and
B. B and C annihilate instantaneously upon collision. The
calculation of S�t� belongs to the class of problems known
as the “capture process” [17–19].

Let the coordinates of the walkers be xA, xB, and xC and
their diffusion coefficients DA, DB, and DC , respectively.
In our case, DB � DC . It is useful to introduce the scaled
coordinates yi � xi�

p
Di , where i � A, B, C. Then we

can map this triplet system to a single walker system with
isotropic diffusion in three-dimensional space �yA, yB, yC�
[17,20]. The walker survives inside the wedge bounded by
two planes: a reflecting plane Pr of

p
DA yA �

p
DB yB

and an absorbing plane Pa of
p

DB yB �
p

DC yC .
The survival probability S�t� of an isotropic random

walker in a d-dimensional cone with absorbing boundary is
known [21]. In particular, S�t� in a wedge with an opening
angle Q asymptotically decays as t2p�2Q [21]. In our
case, one of the boundary planes, Pr , is not absorbing but
reflecting. The probability of the walker at Pr is nonzero
and there is no net flux across this plane. Using this fact,
one can easily show that our system should be equivalent
to the system in a wedge bounded by two absorbing planes
with twice the opening angle.

We find that the survival probability of the triplet decays
with the exponent

d �
p

4Q
�

"
4
p

cos21

√
1p

2�1 1 r�

!#21

, (4)
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where Q is the opening angle of the wedge and r �
DA�DB. The exponent d monotonically decreases from
1 to 1�2 as the diffusivity ratio r varies from 0 to `. At
r � 1 (the same diffusivity for all walkers), d � 3�4.

First, we consider the case that diffusion coefficients
are identical for all species. The N-coupled Langevin
equations, Eq. (3), can be simplified in terms of the total
particle density, r�t� �

P
i ri�t�, as

dr

dt
� 2s0r�t� 2 2s0

Z t

0
L�t 2 t0�r�t0� dt0 , (5)

where L�t� � Lij�t� is independent of i and j. Taking
Laplace transformation, we find

sr̃�s� 2 r�0� � 2s0�1 2 L̃�s�� r̃�s� � 2s0sS̃�s�r̃�s� ,
(6)

where r̃�s� �
R`

0 r�t�e2st dt, and similarly L̃�s� and S̃�s�
are the Laplace transform of L�t� and S�t�, respec-
tively. With S�t� � t2d, one can show that S̃�s� � sd21

for d . 0.
The function r̃�s� has a pole in the positive real axis at

s0 � s01��12d�. When the initial density r�0� is small, the
density r�t� increases exponentially as exp�s0t�. Using the
definition of the characteristic time t [Eq. (2)], we find

t � s02n�z � 1�so � s021��12d�. (7)

With d � 3�4 for the dynamic branching model, we
arrive at n�z � 1��1 2 d� � 4. Therefore we predict
that the critical exponents for the dynamic branching
N-BAW�2� model with hard core interaction in one
dimension are

n� � 2, z � 2, a � 1�2, b � 2 , (8)

which should be valid for all N . 1. For the static
branching N-BAW�2� model, d � 0 and n� � b � 1�2.
Without hard core interactions, branching methods do not
matter and d � 1�2, which leads to Eq. (1).

We check the above predictions for the N-BAW�2�
model by direct numerical simulations for N � 2, 3, and
4. We start with a pair of particles. With probability p,
a randomly chosen particle (Ai) creates two offspring
(2Aj) on two nearest neighboring sites (dynamic/static
branching). The branching probability p is distributed
as gp for i � j and �1 2 g�p��N 2 1� for i fi j.
Otherwise, the particle hops to a nearest neighboring
site. Two particles of the same species at a site annihilate
instantaneously. In cases of models with hard core
interactions, branching/hopping attempts are rejected
when two particles of different species try to occupy the
same site. Critical probability pc � 0 for all models
considered here.

We measure the total particle density rs in the steady
state, averaged over 5 3 102 � 5 3 104 independent
samples for several values of D � p 2 pc (0.001 � 0.05)
and lattice size L (25 � 211). We set g � 1�2. Using the
finite-size scaling theory [22]
1684
rs�D, L� � L2b�n�F�DL1�n� � , (9)

the value of n� is determined by “collapsing” data of rs

with b�n� � 1 (Fig. 1). Numerical data show that n�

does not depend on N in all models as expected. We find
n� � 1.00�5� for models without hard core interactions,
which agrees with the result by Cardy and Täuber [7].
With hard core interactions, we find n� � 1.9�1� for the
dynamic branching models and n� � 0.50�3� for the static
branching models, which confirm our predictions within
statistical errors.

When the diffusion coefficients are not identical for dif-
ferent species, Sij�t� decays with the exponent d depend-
ing on diffusivity ratio r � Dj�Di . Instead of a single
Langevin equation, we are then forced to deal with the
N-coupled Langevin equations. The solution of the sys-
tem of equations is difficult in general, but the equations
become quite simple for N � 2.

Laplace-transformed coupled equations for N � 2
become

sr̃1�s� 2 r1�0� � 2s0sS̃12�s�r̃2�s� ,

sr̃2�s� 2 r2�0� � 2s0sS̃21�s�r̃1�s� .
(10)

We take r2�0� � 0 as an initial condition and solve the
equations for r̃1�s�:

sr̃1�s� 2 r1�0� � 4s02sS̃12S̃21r̃1�s� . (11)

Note that S12�t� decays with exponent d�r� with r �
D2�D1 and S21�t� with d�1�r�; see Eq. (4). From the pole
position of r̃1�s�, we arrive at

n��r� �
1

2 2 d�r� 2 d�1�r�
. (12)

The exponent d�r� ranges from 1�2 to 1, but d�r� 1

d�1�r� varies only slightly with r . It ranges from 3�2
to 1.5255, so n��r� varies within only a few percent. Be-
cause of rather large statistical errors (�10%), we could
not confirm numerically the r dependence of n�. How-
ever, it is clear from our derivation that n� should vary
continuously with diffusivity ratio. Although we were not
able to obtain a similar expression for n� for general N ,
we expect that n� varies continuously but only slightly
with r for all N . 1.

In summary, we showed that hard core interaction in the
N-BAW�2� model changes its universality class in a non-
trivial way. Details of branching methods (static/dynamic
branching) and also the diffusivity ratios between differ-
ent species change drastically the absorbing-type critical
phenomena. We find that, for all N . 1, the dynamic
branching models with hard core interaction form a new
universality class, different from the models without hard
core interaction. Especially, the scaling exponents vary
continuously with the diffusivity ratios. The static branch-
ing models with hard core interaction form yet another
new universality class. Therefore, one should not trust the
conventional bosonic formalism in studying multi-species
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FIG. 1. Data collapse of rsLb�n� against DL1�n� with b�n� � 1 for various system sizes L � 25, . . . , 211 for N � 2 BAW(2)
models (a) without hard core interaction, (b) with hard core interaction (dynamic branching), and (c) with hard core interaction
(static branching). The best collapses are achieved with (a) n� � 1.00�5�, (b) 1.9�1�, and (c) 0.50�3�, respectively.
models in general. Numerical simulations confirm most of
our predictions, but large scale simulations are necessary
to measure the diffusivity ratio dependence of the scaling
exponents.

The present analytic method to study the effect of hard
core interaction can be applied to a wide range of multi-
species diffusion-reaction models near the annihilation
fixed point. Our analysis implies that many multi-species
models with hard core interaction may exhibit a nontrivial
absorbing phase transition with continuously varying
exponents.
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