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We investigate the behavior of spiral waves in a quasi-two-dimensional spatial open reactor using
Belousov-Zhabotinsky reaction. The goal of this study is to answer two questions raised recently: Can
a system sustain a stable long-wavelength modulated spiral? What causes the transition from spiral to
defect-mediated turbulence? Our experimental results show that in a certain range of control parameters,
a sustained long-wavelength modulated spiral is stable. The amplitude and the wavelength of modulations
increase with the control parameter. As the latter is increased to across a threshold, defects are generated
far away from the spiral center as a result of the neighboring two wave fronts being too close.

PACS numbers: 47.20.Lz, 47.27.Cn, 82.20.Mj

Transition from regular patterns to spatiotemporal chaos
has received considerable attention, and is found in many
systems of interest, such as fluid flows [1-4], cardiac
tissue [5—7], populations of slime mold [8], and reaction-
diffusion system [9-12]. Among them, spiral wave in-
stability in a reaction-diffusion system is one of the most
robust phenomena observed in experiments. With the
control parameters varied, instability occurs so that spi-
ral waves break up and the system undergoes a transition
to a state of defect-mediated turbulence. Three different
breakup scenarios are documented in experiments. In the
first case, transition to spatiotemporal chaos occurs when
a periodic external forcing is added and the ratio of the
spiral-rotation period to that of the forcing is close to 3/2
[11]; in the second case, spiral waves break near the spi-
ral core due to a Doppler instability [12,13], when a Hopf
bifurcation contributes to spiral core, making the latter me-
andering [14]; in the third case, spiral waves become un-
stable and break up far away from the core because of a
long wavelength instability [10].

Spiral waves far away from the tip can be considered
as planar wave trains in an oscillatory system. Near the
onset of Hopf bifurcation, the system’s variable can be
written as a function of time ¢: ¢ = ¢y + Aexp(iw 1) +
c.c. In a ferroin catalyzed BZ reaction, ¢ corresponds to
the concentration of ferroin, . is the Hopf frequency, and
A is the complex amplitude of oscillations which obeys
the complex Ginzburg-Laudau equation (CGLE) in one
dimension:
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where 79 and & are, respectively, the characteristic time
and the correlation length of the system. g, g2, d;, and
d,, are related to the diffusion coefficients and ensemble
of reaction kinetics. Using 79 and & as time and length
units, after rescaling we have
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where @ = d»/d, and B = g»/g1 are control parame-
ters. [Equation (2) has traveling plane wave solutions
Ay = Fexpli(kx — wt)], where F>=1— k> and
o = ak? + B(1 — k?). They exist for k> < 1. The
linear stability analyses [15,16] show that in the long
wavelength limit, the complex growth rate A as a function
of the wave number of inhomogeneous perturbations
p satisfies

M p) = ivgp — Dyp* + 0(p?), 3)

where v, = 2(8 — @)k and D) = 1 + a8 — 2k*(1 +
B%)/(1 — k?). When Dy < 0, the so-called Eckhaus in-
stability occurs. This instability is a long-wavelength in-
stability and has a convective nature.

Further nonlinear analyses reveal that Eckhaus instabil-
ity does not directly lead to a spiral wave breakup, generat-
ing defect-mediated turbulence. A stable long wavelength
modulated solution is expected [1]. Recently, Tobias and
Knobloch [17] pointed out that the spiral wave breakup
is due to the appearance of an unstable global mode that
asymptotes to the absolute instability, and both the modu-
lation waves and the resulting instability move in from the
boundary. However, the numerical simulation conducted
by Bér ef al. [18] on a reaction-diffusion model indicates
that, for oscillatory conditions, the convective variant of
Eckhaus instability exists, and the breakup does not begin
to occur from the boundary. This result is consistent with
the predictions of Janiaud et al. [1,15].

In this Letter, we investigate the long-wavelength in-
stability and breakup of spiral waves in experiments with
a quasi-two-dimensional BZ reaction. We observe that
local perturbations can saturate in time after the instability
occurs. As a result, sustained long-wavelength modulated
spiral waves will appear, and the pattern is stable in the fi-
nite size of the reactor. The amplitude and the wavelength
of modulations increase with the control parameter. As the
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latter is increased to across a threshold, defects are gener-
ated far away from the center, as a result of the neighboring
two wave fronts being too close.

The experimental setup and chemical compositions are
the same as that described in Ref. [12], except we use
higher concentrations of sodium bromate and malonic acid
(see caption of Fig. 1). As in the previous work [10,12],
the initial condition is chosen such that only one spiral tip
is located in the center of reaction medium. The concen-
tration of sulfuric acid in compartment B ((H,SO4]p) is
chosen as the control parameter. Enough time (about an
hour) is allowed between changes of the control parameter
so that the system can relax to its new asymptotic state. At
low [H,SO4]p (0.63 M), the spiral state is stable; a spi-
ral simply rotates and its waves travel outward, as shown
in Fig. 1(a). Because the reaction medium is much larger
than the spiral wavelength (aspect ratio =50), the influ-
ence of the boundary is not important.

As [H,SO4]p is increased to across a critical value
(0.72 M), the long-wavelength instability settles in. As
a result, apparent spatially modulated waves emerge so
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FIG. 1. The snapshots of long-wavelength modulated spirals
and defect-mediated turbulence. [ H,SO4]z (in M): (a) 0.63,
simple periodic spiral; (b) 0.765, onset of the long-wavelength
instability; (c) 0.90, full developed modulated spirals; (d) 0.94,
and (e) 0.95, onset and beyond of defect-mediated turbulence;
(f) 0.97, a state of compact laminar disks. Other control pa-
rameters are kept fixed: [MA], = 0.4 M, [KBr]z = 30 mM,
[NaBrOs;]4z = 0.6 M, [ferroin]y = 1.0 mM, and temperature
25 *£ 0.5°C. The images shown are 13.3 X 13.3 mm.

that the distance between successive wave fronts (the local
wavelength) varies spatially; see Figs. 1(b) and 1(c). The
optical intensity I(x) of the spiral waves along the distance
from the spiral core is shown in Fig. 2(a). It has clear
amplitude and phase modulations. Figure 2(b) shows the
local wavelength variation, which is obtained by wavelet
technique. One observes that the phase modulation is spa-
tially periodic, and it goes in phase with amplitude modu-
lation. This is consistent with the observation in Ref. [1].
The spatial Fourier spectrum, as shown in Fig. 2(c), ex-
hibits two independent peaks at k. and k,,, respectively,
corresponding to the carrier and the modulational wave
number [proportional to k and p in Eq. (3)]. The ratio of
the two wave numbers is 5.33, thus the instability is of a
long-wavelength type. Peaks of combinations of k. and
kp (ke * ki, ko = 2k,,) are also shown in the spectrum.
They show asymmetry in the power of the sidebands. Be-
tween [H,SO4]p = 0.72 — 0.94 M, no additional defects
appear and the long-wavelength modulated spiral is sus-
tained in the finite reaction medium.

We measure the periods, the wavelengths, and the
traveling speeds of the long-wavelength modulation and
their carrier waves as a function of the control parameter
[19]. The results are presented in Fig. 3. Near the onset
of the long-wavelength instability, the period of the long-
wavelength modulation decreases with the increase of the
control parameter [Fig. 3(a)], while the corresponding
wavelength varies little [Fig. 3(c)]. However, when
[H,SO4]p passes across a value (0.80 M), the period of
the modulation waves attains to a minimum value and
then begins to increase [Fig. 3(a)], at the same time the
modulation wavelength also increases with the control
parameter [Fig. 3(c)]. Meanwhile, the period of the
carrier waves always decreases, but the rate of decrease
changes at the turning point [Fig. 3(b)]. Figure 3(e)
presents the phase velocities V,,, and V. as a function of
the control parameter. Although there is a turning point in
the periods of modulation and carrier waves [Figs. 3(a)
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FIG. 2. Measurements of the long-wavelength instability in
Fig. 1(c). (a) Optical intensity of spiral waves as a function
of the distance from the spiral core. (b) The variation of local
wavelength with the distance. (c) The spatial power spectrum.
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FIG. 3. The periods [(a), (b)], the wavelengths [(c),(d)], and

the phase velocities [(e)] of the modulation and carrier waves
measured as a function of [H,SO,]p at onset and beyond the
long-wavelength instability. The subscripts m and ¢ denote
modulation and carrier waves, respectively. (f) The absolute
value of convective velocity |V,].

and 3(b)], the increase rate of the phase velocities seems
to be constant [Fig. 3(e)]. One notices that the carrier
wave propagates out faster than the modulation waves, so
that the convective velocity relative to the carrier waves
Vq(= V,, — V,) points to the spiral center. In Fig. 3(f),
one observes that the convective velocities become larger
with the increase of control parameter. From the above
results, the onset of the long-wavelength instability is
possibly due to Eckhaus instability.

Figure 4 presents the bifurcation diagram of the long-
wavelength instability.  The amplitude of the phase
modulation is obtained by measuring local spiral wave-
length, then calculating half of the difference between
maximum and minimum values. One observes in Fig. 4
that the amplitude of the modulation increases with the
control parameter. However, because of lacking data near
the onset and a large error bar, we do not know if the curve
obeys the square root law predicted by Janiaud et al. [1].

As the control parameter is increased across another
threshold (0.94 M), defects are continuously generated;
see Figs. 1(d), 1(e), and 1(f). The spiral breakup takes
place far away from the center, and there exists a disk of
laminar core of the spiral where turbulence cannot invade.
Thus the system is separated into two different regimes:
ordered spiral waves inside the core and defect-mediated
turbulence outside of the core. The size of laminar core
decreases as the control parameter increases. However,
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FIG. 4. The amplitude of phase modulation as a function of
the control parameter. The nonzero values before the onset
((H,SO4]3 = 0.72 M) reflect the error bars. Other parameters
are fixed as in Fig. 1.

in the turbulent sea there are some of the defects having
chances to develop into spirals, generating many laminar
cores of ordered spirals. The sizes of the laminar cores tend
to be equal, and the cores tend to form a compact pattern;
see Fig. 1(f). At last, when [H,SO4] is above 1.0 M, the
turbulence state will invade the whole space, which is not
shown here.

The coexistence of several stable laminar core regions
in Fig. 1(f) hints that defects are not generated from the
boundary. Where and how do these defects first emerge?
To answer this question, we conduct the following experi-
ment: [H,SO4]p is changed so that the system jumps from
a state of stable modulated spiral directly to a state of full
turbulence. Observation of transient behavior of the system
will give us the information of how the instability develops
and the defects are generated as time goes by. This process
is presented in Fig. 5. At the beginning, we have a long-
wavelength modulated spiral [Fig. 5(a)]. After changing
the control parameter, one observes that the amplitude and
the wavelength of modulation waves increase as they spi-
ral out from the spiral center, as shown in Fig. 5(b). As
a result, locally the long wavelengths become longer and
the short ones become narrower. When some local wave-
lengths are too small, the wave fronts become unstable.
This leads to the wave fronts’ breakup and the emergence
of defects, as shown in Figs. 5(c) and 5(d). It is clear
that the phase modulation generated from spiral center is
responsible for the spiral breakup. Gradually, more and
more defects appear. When ¢ = 419 s, only a small spi-
ral core remains stable, out of which the defects-mediated
turbulence dominates, as shown in Fig. 5(e). At last, the
turbulence almost invades the whole space; see Fig. 5(f).

Our experiment shows that a local modulation satu-
rates in time for a given control parameter; see Fig. 1(b)
and 1(c). However, due to the finite reactor size, we do
not know whether the amplitude of modulation can be
saturated as a function of space, or it is just a long-lived
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FIG. 5. The long-wavelength instability development as a
function of time when [H,SO,]p is varied from 0.90 M directly
to 1.05 M: (a) O's, (b) 239 s, (c) 272 s, (d) 334 s, (e) 419 s,
and (f) 1985 s. Other parameters are the same as in Fig. 1.

transient. Indirect experimental evidence shows that the
modulations are long-lived transient rather than stable. In
the case of Fig. 1(c), if we move the spiral center to the
upright corner of the reactor, we find that spiral waves
break up at the down-left corner. This happens because
the distance that allows a modulation to propagate in the
observable area is almost doubled, so that the amplitude
of modulation has space to increase to a lever that breaks
spiral waves.

Several comments are in order. (i) Hynne et al. [20]
measured the values of @ and 8 in Eq. (2) for cerium
catalyzed BZ reaction, and found they are —1.4 and 0.6,
respectively. If we assume these values in our system, we
have v, > 0 [see Eq. (3)], which means that the convec-
tive velocity relative to the carrier waves points to the di-
rection of the spiral center. Our observations in Fig. 3(e)
agree with this result. However, since there are multiple
gradients of concentrations across the reaction medium,
we don’t know the chemical compositions in the patterned
layer, thus cannot deduce the values of @ and B using the
method introduced by Hynne et al. (ii) Although CGLE is
a good model, it cannot fully describe traveling waves in

BZ reaction. Chemical waves are dictated by a dispersion
relation, which states that there exists a minimum wave-
length, beyond which waves become unstable and break.
We believe that this is what happened in the case of Fig. 5.
(iii) It seems that there exist two types of dynamical behav-
ior of the modulation waves. In one type, the modulation
period decreases with the control parameter; in the other
type, it increases with the control parameter, as shown in
Figs. 3(a) and 3(b). We do not have a satisfactory expla-
nation for this phenomenon at present.
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