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The control of time evolution of a quantum state under various physical constraints is investigated
and solved in the context of a two-level system. We have discovered a general scheme of steering an
eigenenergy state to a destination without net nonadiabatic transitions, and we discuss how the result

may be tested and utilized in practice.
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Precision measurements and applications in quantum
mechanics often depend on the careful preparation and
controlled evolution of a quantum state [1]. A commonly
used means of coherent control is through the application
of precisely tailored ac pulses [2], and there is also a large
body of theoretical literature for optimal control of quan-
tum states [3]. Adiabatic following is in principle another
general method of coherent control [4], which has been
used recently to prepare ultracold atoms in a particular
Bloch band [5]. This method depends crucially on the
slowness of time evolution of the Hamiltonian and can suf-
fer some losses due to nonadiabatic transitions [6].

In this Letter, we show how to achieve the goal of adia-
batic switching of a state without any amount of nonadia-
batic transitions: an initial eigenstate remains completely
an eigenstate at the final time when the Hamiltonian fin-
ishes an evolution. For simplicity and also for wide ap-
plications [7,8], we choose to address the problem in the
context of a two-level system or equivalently a spin-1/2
in a magnetic field. We show that the adiabatic switching
can always be achieved even with the field constrained in
a plane and that complete spin reversal can be obtained
by Zener-like Hamiltonians where one field component
sweeps from —oo to +o while the others remain constant.
We also discuss how our results may be applied in prac-
tice. We believe that the concept of eigenstate steering
should not be confined to two-level systems, but we leave
the generalization to three or more energy levels to a future
publication.

Basic discussions.—We start with some general discus-
sions on the basic aspects of the control problem for the
two-level system to set up the scope and strategy of our
approach. We will proceed with the method of inverse
solution of the Schrodinger equation or the Heisenberg
equation of motion, while adding various physical con-
straints on the Hamiltonian later. Previous studies with
this method have been very fruitful, with the discovery of
exact solutions of generalized rotating wave states [9] and
evolution loops [10]. A closely related method is known
as tracking [11].

1626 0031-9007/00/85(8)/1626(4)$15.00

The most general form of a two-level Hamiltonian can
be written as [12]

1
H = _E(Bla-x + BzO'y + B30-Z + BOI)’ (1)

where 1 is the 2 X 2 unit matrix, the o¢’s are Pauli
matrices, and the B’s are real functions of time. The
time evolution of the states is completely described by a
time dependent unitary matrix U, and one can solve the
Schrodinger equation inversely to find the Hamiltonian
that generates such an evolution,

H=i—U".

p 2)

The story seems to be finished in a single line. However,
for many applications, the control of only a single state
is of concern, and one may not even be interested in the
overall phase of the state. These will leave some design
freedom in the choice of the Hamiltonian, which can then
be used to accommodate physical constraints of the appa-
ratus or to achieve some optimization goals [13].

The two components of a state can generally be written
as [12]

Y = cos(a/2)e 1B2e=iv/2,
o sin(a/2)e+iﬁ/zefi7/2,

3)

where «, 3, and vy are three real functions of time. Physi-
cally, « and 8 are the polar and azimuthal angles of the
mean spin vector (Bloch vector) [12]

r = ((oy),{(oy).{0;))

= (cosf sina, sinf sina, cosa) , 4

while v is the overall phase. Clearly, the four parameters of
the Hamiltonian are not going to be uniquely determined
by the three parameters of the wave function. One can
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allow an arbitrary time dependent B, with the remaining
parameters of the Hamiltonian given by

By = —[(y + By)sina cosf8 — asinfB],
By = —[(y + By)sina sinB + a cosB], (5)
By = —[B + (¥ + By)cosal.

The control of the spin angles («, 8) can be discussed
with no reference to the overall phase y and the scalar part
of the Hamiltonian By. Using the Heisenberg equations of
motion, one finds [12]

r=r X B, (6)

where B = (By, B;, B3) is the magnetic field (torque vec-
tor) and the equation is also known as the Bloch equation.
An invariant of the equation of motion is the magnitude r
of the mean spin, which is, in fact, equal to 1 for a pure
state [14]. If one is interested in the simultaneous motion
of two spin vectors (two states) driven by the same field,
then the angle between the spins is also an invariant of the
equation of motion. Such a rigid body rotation can be com-
pletely described by the three Euler angles, which should
then determine the three field components completely [9].
Here, however, we are interested in the control of a single
state, for which a general solution for B can be written as

B=rXr+ fr, (N

which involves a time dependent free parameter f. What is
the physical meaning of f? If one observes the motion of
r in a frame which rotates with an angular velocity Q, the
effective field changes to B’ = B + () [15]. If the frame
is chosen to be that spanned by the orthogonal axes r, T,
and r X r, the angular velocity is then ) = r X r, and
the effective field is given by B’ = fr. In other words, in
the frame comoving with the spin vector, the effective field
is purely in the direction of the spin with a magnitude and
sign given by f.

The solution of the field (7) with f = O then has the
physical meaning that it represents a kind of field that
can be simulated by inertial forces in a rotating frame
of reference. What kind of constraint must such a field
satisfy? Because both B=r X r and B =F X r are
perpendicular to r, the vector B X B must be parallel to
it. Therefore, if we calculate the time derivative of the unit
vector of B X B, the result must have the same magnitude
as |r| = B, ie.,

d L

—(m X n/[n|)| =B, 8

o X i/l ®)
where n is the unit vector of B. This condition can
be made geometrically more transparent by writing it in

the form

v|n><—= , 9)

where v = [|n| is the speed along the curve of n(z), and
s = [dt v is the length variable of the curve. The above
condition then means that the magnitude of the field B must
be equal to the product of the speed and geodesic curvature
of the curve formed by its directional unit vector.

Planar fields.—The free parameter f can be used to ac-
commodate physical constraints in experiments. A highly
interesting case in practice is that the field is restricted to
a single plane [7,8]. Without losing generality, we take
this plane to be the x-y plane. The condition of B3 = 0 in
Eq. (7) fixes the parameter f = S sina tana. The other
two components of the field are then fixed to be

By = asinB + Btana cosf, (10)

B, = —d&cosf + [3tana sing.

These expressions are smooth everywhere except at the
equator &« = 7 /2. Therefore, any spin motion that is
localized entirely within the north or the south hemisphere
can be generated by a field which lies completely on the
equator plane. This result may have some implication
on the issue of dynamical localization in a double well
potential, which is often modeled as a two-level system
(one level from each well) [16].

The spin motion under a finite planar field is necessar-
ily restricted in the manner that 8 must vanish when it
crosses the equator = 77 /2. This implies that if the spin
crosses the equator at a finite rate (a # 0), the trajectory

a

must be vertical at the equator (Z—; =3 = +o). How-
ever, if the spin approaches the equator with a vanishing
rate, @« = 0, the trajectory does not have to be vertical and
can be even tangential to the equator. In any case, if one
is interested only in achieving a target final state from a
specific initial state, a planar field is more than sufficient.
There is a general theorem [17] that almost any rotation
of the states can be generated by the successive applica-
tions of two different components of the field, and our so-
lution shows that the same can be achieved with smooth
evolution of the field with two components. In the follow-
ing, we wish to find solutions of the control problem that
has additional requirements on the initial and final field
directions.

Suppose the spin was initially fixed to a direction in
which the field lies. Is it possible to bring the spin into
another direction when the field rotates into that direction?
According to the adiabatic theorem, this can be done up to
exponentially small errors if the speed of field rotation is
always much slower than its magnitude, which gives the
separation between the energies of the two adiabatic eigen-
states [4,6]. However, it is possible to devise solutions
without any amount of nonadiabatic corrections and with
the speed of field rotation not necessarily slow. To achieve
this, one can simply specify a spin motion with r = 0 at
the initial and final times and obtain the necessary time
dependent field from the inverse solution in Eq. (7). This
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simple method does not work when there is a constraint on
the field. For the case where the field lies on a plane, an
exact solution was provided in Eqgs. (4.49) of Ref. [7] with
the desired property. Here we show a general method for
obtaining such solutions, which requires that &« — 77 /2,
B — 6 at the initial and final times, where 6 is the angle
of the field with the x axis. To make these requirements
more concise, we rewrite Eq. (10) in terms of the polar
coordinates of the field as

B = (&* + B%tan’a)'?, (11

6 = B — tan '(a’ cotar), (12)

where o/ = Z—a. The disappearance of time derivatives in
Eq. (12) shows that the angle of the field is a geometric
property of the trajectory, i.e., once « is known as a func-
tion of B, the angle 6 is known as a function of 8 as well,
regardless of how 8 may depend on time [18]. The condi-
tion of B — @ can then be expressed as a geometrical con-
dition of the trajectory, a’cota — 0, as 8 — 0+, where
0= is the initial and final angles of the field. Therefore, if
la — /2| goes to zero as |8 — 6+|7=, the above con-
dition is equivalent to p+ > 1/2. In the example given
in Ref. [7], one effectively has a spin trajectory of the
form sinfB tana = const, corresponding to B+ = 0, T,
and p+ = 1.

Zener-like models.—We now add one more physical
constraint to our Hamiltonian: only one field component
can vary in time. In the prototype adiabatic transition
problem, the Zener problem [6], the parameters of the
Hamiltonian may be written as B; = A, B, = vt, and
B; =0. Then 6 = tan '(vt/A), and the polar and
azimuthal angles «, B can be expressed in terms of
parabolic cylinder functions. If the initial spin lies in
the field direction at ¢t = —oo, one finds that it will
deviate from the field at + = o« by an angle given by
2sin~'[exp(— 7 A?/2hv)], which signifies a finite prob-
ability of nonadiabatic transitions. In contrast, we will
show that it is possible to construct a similar Hamilto-
nian, but the net nonadiabatic excitation vanishes com-
pletely [19].

Our model Hamiltonian has the form with By = 0,
B, = const, and with B, changing monotonically from
—oo to +% in a manner similar to the Zener model. We
wish to construct trajectories yielding o — 7/2 and
B — *m/2 at the initial and final times, correspond-
ing to a complete spin reversal with the field. These
are satisfied, for instance, by the family of trajectories
(Fig. 1) defined by sina = exp[—e€ cos?B], with € > 0
and g > 1, where the latter inequality stems from the
condition of p+ > 1/2 given earlier. The behavior of the
field component B, is then fixed as follows. From the
condition of By = Bcosf = A and Egs. (11) and (12),
we find that
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FIG. 1. A family of trajectories defined by sina =

exp[—e cos? B], shown with € = 0.1 and ¢ = 2,3,4,5,6,9, in
increasing order from ¢ = 2 to ¢ = 9.

B
tA = / dB+a'? + tan?a cos[B — tan”'(a’ cotar)],
0
(13)

where we have taken the zero of time to be at § = 0.
Therefore, given a trajectory of the spin @ = a(B), the
above equation fixes the dynamics (B as a function of
time). This knowledge then determines the time depen-
dence of B, completely:

B, = Bsinf
= BVa' + tantesin[B — tan” (e’ cota)]. (14)

Summarizing the arguments, all such time dependent fields
will necessarily lock the spin to their directions at the initial
and final times.

We now analyze the behavior of the field component B,,
using the above example of the spin trajectories (Fig. 2).
For short times, we find that it goes through zero linearly as

B,

0 6 12

t

FIG. 2. Time dependence of B, for Zener-like models with
B, =1 that gives rise to the spin trajectories shown in Fig. 1.
The inset shows the behavior at short times.
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By = A*(1 — ge)\Je?€ — 1t, just like the Zener model.
The behavior at large times depends on the value of g. For

2

g > 4, it diverges as *A|(g/2 — 2}/2e At]i7 as t —
*oo. Therefore, one can achieve complete asymptotic spin
locking by a field that diverges sublinearly, linearly, or
superlinearly at large times. The linear divergence occurs
at g = 6, but this does not mean that we have reduced
to the Zener model, because the slopes at small and large
times are different. Nevertheless, for € << 1, the slopes
are almost the same, and our model may be regarded as an
approximation to the Zener model but with no nonadiabatic
transitions. In the marginal case of ¢ = 4, we have the
exponential divergence B, — *A exp[A+/2¢ |¢]]. For 1 <
q < 4, the asymptotic spin angles and the field values are
reached at finite times as is signified by the convergence
of the integral (13) at B8 = *7 /2.

Applications.—Finally, we discuss possible applica-
tions of our findings. A basic operation in the field of
quantum information is the rotation of a qubit [20], the
transition from one quantum state to another or to a
certain superposition of them, which is usually achieved
by the application of a precisely tailored ac pulse. If
the qubit is physically represented by a spin, then our
method shows directly how it may be rotated as desired,
with the additional benefit that it aligns with the field
both at the initial and final times and is thus protected
against small perturbations such as noise and dissipative
processes at the beginning and the end of the operation.
If the qubit is represented by a two-level atom, one needs
to shine a laser chirping from well below to well above
the resonant frequency in order to achieve our Zener-like
model. In the rotating-wave frame of reference and within
the rotating-wave approximation, this effectively reduces
to our spin model with one component of the field given
by the detuning and another given by the dipole coupling
amplitude [7].

For another application, one may use our scheme to im-
prove the design of optical lattice motion to accelerate cold
atoms to high speed. The optical acceleration method has
been used to prepare atoms to appropriate initial condi-
tions and to observe a number of classic quantum effects
in condensed matter physics [5]. For a constant accelera-
tion, there is a finite probability for the atoms to tunnel
out of a Bloch band. The tunneling is dominated by a gap
of avoided crossing of two bands and can be effectively
analyzed by the Zener model with B; given by the energy
gap and with B, changing at a constant rate proportional
to the acceleration. One should be able to shut off the tun-
neling completely by modifying the acceleration in time
according to our design for B,(r). A detailed theoretical
study of tunneling prohibition using an ac field has been
undertaken in parallel by Catanzariti and Dunlap [21].
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