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Particles Sliding on a Fluctuating Surface: Phase Separation and Power Laws
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We study a system of hard-core particles sliding locally downwards on a fluctuating one-dimensional
surface characterized by a dynamical exponent z and no overall tilt. In numerical simulations, an initially
random particle density is found to coarsen and obey scaling with a growing length scale �t1�z . The
structure factor deviates from the Porod law for the models studied. The steady state is unusual in that
the density-segregation order parameter shows strong fluctuations. The two-point correlation function
has a scaling form with a cusp at small argument which we relate to a power law distribution of particle
cluster sizes. Exact results on a related model of surface depths provide insight into this behavior.

PACS numbers: 05.70.Ln, 05.40.–a, 05.70.Jk, 64.75.+g
How do density fluctuations evolve in a system of par-
ticles moving on a fluctuating surface? Can the com-
bination of random vibrations and an external force such
as gravity drive the system towards a state with large-
scale clustering of particles? Such large-scale clustering
driven by a fluctuating potential represents an especially
interesting possibility for the behavior of two coupled sys-
tems, one of which evolves autonomously but influences
the dynamics of the other. Semiautonomous systems are
currently of interest in diverse contexts, for instance, ad-
vection of a passive scalar by a fluid [1], phase ordering
in rough films [2], the motion of stuck and flowing grains
in a sandpile [3], and the threshold of an instability in a
sedimenting colloidal crystal [4].

In this paper, we show that there is an unusual sort of
phase ordering in a simple model of this type, namely,
a system of particles sliding locally downwards under a
gravitational field on a fluctuating one-dimensional sur-
face with zero global average slope. The surface evolves
through its own dynamics, while the motion of particles
is guided by local downward slopes; since random surface
vibrations cause slope changes, they constitute a source of
nonequilibrium noise for the particle system. The mecha-
nism which promotes clustering is simple: fluctuations
lead particles into potential minima or valleys, and once
together the particles tend to stay together, as illustrated
in Fig. 1. The question is whether this tendency towards
clustering persists up to macroscopic scales. We show be-
low that in fact the particle density exhibits coarsening to-
wards a phase-ordered state. This state has uncommonly
large fluctuations which affect its properties in a qualita-
tive way, and makes it quite different from that in other
driven, conserved systems which exhibit coarsening [5].

It is useful to state our principal results at the outset:
(i) In an infinite system, an initially randomly distributed
particle density exhibits coarsening with a characteristic
growing length scale L �t� � t1�z , where z is the dynami-
cal exponent governing fluctuations of the surface. For
the models we study, the scaled structure factor varies as
jkL �t�j2�11a� with a , 1, which represents a marked de-
viation from the Porod law �a � 1� for coarsening systems
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[6]. Further, a finite system of size L reaches a steady
state with the following characteristics: (ii) The magnitude
of the density-segregation order parameter has a nonzero
time-averaged value, but shows strong fluctuations which
do not decrease as L increases. (iii) The static two-point
correlation function C�r� has a cusp at small values of the
scaled separation jr�Lj. (iv) The sizes l of particle clus-
ters are distributed according to a power law for large l,
up to an L-dependent cutoff. These results are established
by extensive numerical simulations. Further, the properties
(iii) and (iv) are shown to be related, using the independent
interval approximation [7] applied to the cluster distribu-
tion. Also, we define a related coarse-grained depth model
of the surface, and show analytically that the steady state
characteristics (ii)–(iv) hold for this model.

The sliding particle (SP) model is defined as a lattice
model of particles moving on a fluctuating surface. Both
the particles and the surface degrees of freedom are repre-
sented by 61 valued Ising variables �si� and �ti21�2� on a
one-dimensional lattice with periodic boundary conditions,
where s spins occupy lattice sites, and t spins occupy
the links between sites. Then ni �

1
2 �1 1 si� represents

the particle occupation of site i, whereas ti21�2 � 11 or
21 represents the local slope of the surface (denoted � or
n, respectively). The dynamics of the interface is that of
the single-step model [8], with stochastic corner flips in-
volving exchange of adjacent t’s, thus �n ! n� with rate

(a) (b)

(c)

FIG. 1. Depicting clustering of particles �≤� in a section of the
fluctuating surface. A surface fluctuation �a� ! �b� causes the
particles to roll into a valley. Particles remain clustered even
after a reverse surface fluctuation �b� ! �c� occurs.
© 2000 The American Physical Society
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p1, while n� ! �n with rate q1. A particle and a hole
on adjacent sites �i, i 1 1� exchange with rates that de-
pend on the intervening local slope ti21�2, thus the moves
≤n±! ±n≤ and ±�≤ ! ≤�± occur at rate p2, while the
inverse moves occur with rate q2 , p2. The asymme-
try of the rates reflects the fact that it is easier to move
downwards along the gravitational field. Note that the dy-
namics conserves

P
s and

P
t; we work in the sector

where both vanish. In the remainder of this paper, we re-
port results for symmetric surface fluctuations �p1 � q1�,
whose behavior at large length and time scale is described
by the continuum Edwards-Wilkinson model [9]. Further
we consider the strong-field �q2 � 0� limit for the particle
system, and set p2 � p1. We have also investigated the
behavior away from these limits, and found that our broad
conclusions remain unaffected. The SP model is a limiting
case of the Lahiri-Ramaswamy model of sedimenting col-
loidal crystals [4]; it corresponds to the tilt field evolving
autonomously.

In the SP model, particles preferentially occupy the
lower portions or large valleys of the fluctuating surface.
In order to study the dynamics of the hills and valleys
of the surface, we define a height profile �hi� with hi �P

1#j#i tj21�2. We then define a coarse-grained depth
(CD) model by considering spins si � 2sgn�hi�, where
si is 11, 21, or 0 if the surface height hi at site i is below,
above, or at the zero level. A stretch of like si’s � 11
represents a valley with respect to the zero level. The time
evolution of the CD model variables �si� is induced by
the underlying dynamics of the bond variables �ti21�2�.
The model is similar to the domain growth model of Kim
et al. [10].

In our numerical simulations, we studied the evolution
of the density in the SP model starting from an initial
random placement of particles on the fluctuating surface.
In every Monte Carlo step, we performed 2L random se-
quential updates of the site and bond variables. After an
initial quick downward slide into local valleys, the den-
sity distribution is guided by the evolution of the surface
profile. To quantify the tendency towards clustering, we
monitored the equal time correlation function C �r, t� �
�si�t�si1r �t�	 (Fig. 2). If z is the dynamical exponent
characteristic of the surface fluctuations (z � 2 for the
symmetric surface model), we expect the scale L �t� for
density fluctuations to be set by the base lengths of typi-
cal coarse-grained hills which have overturned in time t,
i.e. L �t� � t1�z . This is indeed the case in the scaling
limit [r ¿ 1, t ¿ 1, r�L �t� fixed] as shown by the col-
lapse to a scaling function Cs��� y � r�L �t���� in Fig. 2. We
found similar scaling collapses for other models of surface
fluctuations with widely different values of z [z � 3�2 for
Kardar-Parisi-Zhang (KPZ) [11] surfaces, and z 
 4 for
the Das Sarma–Tamborenea model [12]].

The existence of a single growing length scale L �t� is
indicative of coarsening towards a phase-ordered state [6].
In the SP model, coarsening is driven by surface fluctua-
tions, rather than more customary temperature quenches.
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FIG. 2. The data for C �r , t� at different times t � 400 3 2n

(with n � 0, . . . , 6), shown in the inset, is shown to collapse
when scaled by L �t� � t1�2.

This causes an interesting feature to appear in the scal-
ing function Cs, namely, a distinctive cusp for small ar-
gument: Cs� y� � C0 2 C1ya for y ø 1 (Fig. 2). We
find the cusp exponent a 
 0.5. This cusp implies that
the scaled structure factor S � �kL �2�11a� for large kL .
This is substantially different from the Porod law behavior
�kL �22, characteristic of customary coarsening systems
[6]. The cusp is also present in the steady state correlation
function, and its origin is discussed below.

In the steady state, we monitored the magnitude of the
Fourier components of the density profile

Q�k� �

É
1
L

LX
j�1

eikjnj

É
, k �

2pm
L

, (1)

where m � 1, . . . , L 2 1. As in [13] we used the low-
est nonzero Fourier component Q� � Q� 2p

L � as a measure
of the phase separation in our system with conserved dy-
namics. The time average �Q�	 
 0 in a disordered state,
and is 
0.318 in a fully phase-separated state. For the SP
model, Fig. 3 shows numerical results for �Q�k�	 versus
k for various system sizes. While �Q�	 approaches a fi-
nite limit as L ! `, the values of Fourier components at
fixed k decrease with increasing L. This provides strong
evidence for phase separation, corresponding to the oc-
currence of density inhomogeneities of the order of the
system size. However Q��t� shows strong fluctuations as
a function of time (Fig. 3, inset). With increasing L, the
separations between fluctuations increase with L, but the
amplitude of fluctuations does not decrease, reminiscent
of the behavior of the order parameter in a model of com-
petitive learning [14]. The best way to characterize these
strong fluctuations is through the probability distribution
Prob�Q��. We found numerically that Prob�Q�� is non-
Gaussian and is characterized by a mean value �Q�	 

0.18, and rms fluctuation ��Q�2	 2 �Q�	2�1�2 
 0.07. De-
spite these large fluctuations in Q�, the configuration of
the system does not become randomly disordered even
when Q��t� is small. Rather, the next few Fourier modes
1603
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FIG. 3. �Q�k�	 as a function of k, for different sizes L � 32,
64, 128, and 256 (from above to below). Inset: time variation
of Q� in the steady state for L � 128.

(k � 4p�L, 6p�L, . . .) are excited at such times, indicat-
ing a breakup into a few macroscopic regions of different
density.

Not surprisingly, these macroscopic fluctuations leave a
strong imprint on spatial correlation functions and cluster
distributions. For instance, the two-point correlation func-
tion C�r� � �sjsj1r 	 varies with r on the scale of the
system size L, as is evident from Fig. 4 which shows that
the data collapse onto a single curve when plotted versus
r�L. For comparison, recall that a phase-separated sys-
tem with sharp interfaces between two macroscopic phases
would show a linear decrease C�r� � M2

0 �1 2 2jrj�L� on
length scales larger than the correlation length. By con-
trast, the curve in Fig. 4 is nonlinear in the full range of
r�L. In particular, like Cs in the coarsening regime, the
scaling function Cs for steady state correlations has a cusp
for small argument:

Cs

µ
r
L

∂
� c0 2 c1

Ç
r
L

Ça
,

Ç
r
L

Ç
ø 1 , (2)

with a 
 0.5. Further, we found that in the steady state
the size distribution of clusters (groups of contiguous lat-
tice sites occupied by like s’s) follows a power law P�l� �
l2u with u 
 1.8 (Fig. 5). This observation gives a pointer
to the physical origin of the cusp in Cs. Interfacial re-
gions between particle-rich and particle-poor phases con-
tain several particle and hole clusters drawn from P�l�; the
resulting structure of these regions is responsible for the
non-Porod behavior of Cs.

There is a relationship between the cusp exponent a and
the cluster power law exponent u within the independent
interval approximation (IIA) [7]. Within this scheme, the
joint probability of having n successive intervals is treated
as the product of the distribution of single intervals. In
our case, the intervals are successive clusters of particles
and holes, which occur with probability P�l�. Defining
the Laplace transform P̃�s� �

R`

0 dl e2lsP�l�, and C̃�s�
analogously, we have [7]
1604
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FIG. 4. C�r� in the steady state of the SP and CD models for
L � 64, 128, 256, and 512. Notice the cusp at small jrj�L. The
curves are fits to the form c0 2 c1y1�2 1 c2y.

s���1 2 sC̃�s���� �
2

�l	
1 2 P̃�s�
1 1 P̃�s�

, (3)

where �l	 is the mean cluster size. In usual applications
of the IIA, the interval distribution P�l� has a finite first
moment �l	 independent of L. But that is not the case
here, as P�l� decays as a slow power law P�l� � l2u

for l ¿ 1. Since the largest possible value of l is L,
we have �l	 � aL22u for large enough L. Considering
s in the range 1�L ø s ø 1, we may expand P̃�s� �
1 2 bsu21; then to leading order the right hand side of
Eq. (3) becomes bsu21�aL22u , implying C̃�s� � 1�s 2

b��aL22us32u�. This leads to

C�r� � 1 2
b

aG�3 2 u�

Ç
r
L

Ç22u

. (4)

This has the same scaling form as Eq. (2). Matching the
cusp singularity in Eqs. (2) and (4), we get u 1 a � 2.
By comparison, the numerically determined values for the
SP model yield u 1 a 
 2.3. We conclude that the IIA
provides useful insights, even though it is not exact.
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FIG. 5. Probability distribution P�l� of particle cluster lengths
for the SP and CD models for L � 256, 512, 2024, and 2048.
The straight lines have slopes 21.8 and 21.5, respectively.
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We can gain considerable understanding into the nature
of phase ordering in the SP model by analyzing the closely
related CD model of surface fluctuations. The relationship
between these models, which is plausible at a qualitative
level, can be quantified by checking whether the overlap
O � �sisi	 is nonzero; numerically we find O 
 0.26.
The similarity in the behavior of the two models is brought
out in Figs. 4 and 5; C�r�L� has a cusp and P�l� has a
power law decay, for both models.

We now show that the CD model can be mapped onto a
random walk (RW) problem and that the mapping can be
exploited to give exact results for several properties. We
make a correspondence between each surface configura-
tion and a RW trajectory, by interpreting ti21�2 � 11 or
21 as the rightward or leftward RW step at the ith time in-
stant. Then si � 1, 21, or 0 depending upon whether the
walker is to the right, to the left, or at the origin after the ith
step. Evidently, the lengths of clusters of s � 1 spins (or
s � 21 spins) represent times between successive returns
to the origin. Thus, P�l� for the CD model is just the well-
known distribution for RW return times to the origin, which
behaves as l23�2 for large l, implying u � 3�2. Since suc-
cessive RW returns are independent events, the IIA is exact
for the CD model. Hence u 1 a � 2, and we conclude
that a � 1�2.

In systems with strong macroscopic fluctuations such as
the SP and CD models, characterization of the steady state
requires the full probability distribution of the order
parameter. For the CD model, an appropriate (noncon-
served) order parameter is M �

1
L

P
si , which for the RW

represents the excess time a walker spends on one side of
the origin over the other side. In order to respect periodic
boundary conditions, we need to restrict the ensemble of
RWs to those which return to the origin after L steps.
The full probability distribution of M over this ensemble
is known from the equidistribution theorem on sojourn
times of a RW [15]: Prob�M� � 1�2 for M [ �21, 1,
i.e., every allowed value of M is equally likely. This
implies �jMj	 � 1�2 and ��M2	 2 �jMj	2�1�2 � 1�

p
12.

The strong fluctuations in M mirror the large fluctuations
of Q� in the SP model.

To summarize, both the SP and CD models exhibit a
phase-ordered steady state with unusual fluctuation char-
acteristics, manifested in several related ways: slow power
law decays of the cluster size distribution, a cusp singu-
larity in the scaled two-point correlation function, and a
probability distribution for the order parameter which re-
mains broad even in the thermodynamic limit.
We have checked numerically that this type of state
survives in the SP model even when we depart from the
strong-field limit by allowing q2 to be nonzero, and when
we vary the ratio p2�p1 of rates of particle and surface
motion from high to low values. Finally, we found that
even when we allow different rates p1 � 1 and q1 � 0
for upward and downward corner flips, which makes sur-
face fluctuations KPZ-like, this type of phase separation
persists and the scaled correlation function shows a cusp
[16]. We found that the state is destroyed, however, if
there is an overall tilt of the KPZ surface. The state is also
unstable under a change of the dynamical rules which al-
lows the s variables to influence the evolution of the t’s;
then, depending on the coupling, there is either a homoge-
neous wave carrying state or one which is strongly phase
separated [4].

It would be interesting to investigate the long-time dy-
namics of the large-scale fluctuations in these models, and
to characterize the steady state in higher dimensions.
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