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Pulling Pinned Polymers and Unzipping DNA
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We study a class of micromanipulation experiments, exemplified by the pulling apart of the two strands
of double-stranded DNA. When the pulling force is increased to a critical value, an “unzipping” transition
occurs. For random DNA sequences with short-ranged correlations, we obtain exact results for the
number of monomers liberated and the specific heat, including the critical behavior at the transition.
Related systems include a random heteropolymer pulled away from an adsorbing surface and a vortex
line in a type II superconductor tilted away from a fragmented columnar defect.

PACS numbers: 87.15.–v, 05.10.Gg, 68.35.Rh, 87.80.Fe
Recent years have seen an explosion in the use of single
molecule techniques to probe biological and other “soft”
materials. It is now possible, for example, to monitor the
breaking of individual “lock and key” bonds [1] and the un-
folding of individual proteins [2]; the mechanical proper-
ties of single DNA molecules [3] and the behavior of single
molecular motors [4] have been characterized in great de-
tail. In contrast to more traditional experiments, these new
approaches give access to fluctuations on the scale of in-
dividual molecules, without the requirement for averaging
over a macroscopic sample. One can, moreover, now push
or pull directly on a micron-sized object, and watch how it
responds. The potentially profound implications both for
complex fluids and for biological physics—where single
molecule techniques can often more closely mimic condi-
tions in the cell than conventional assays—are only begin-
ning to be explored.

Despite a number of notable contributions, theory has
often been outpaced by these rapid experimental advances.
Certainly, the tools available to analyze single-molecule
experiments have not yet reached the level of sophistica-
tion and generality of theories of mesoscopic quantum sys-
tems. This is especially true when it comes to the role
of quenched randomness, which, though often present, is
typically neglected in initial theories of a given system.
This Letter seeks to fill some of this gap. We study a class
of micromanipulation experiments in which a polymer or
other linelike object is pulled away from a confining po-
tential well. An example of such a situation is the pulling
apart of the two strands of double-stranded DNA (dsDNA)
(Fig. 1). Formally, the distance between the two strands
may be viewed as the coordinate of a single polymer,
and the base-pairing interactions between complementary
strands as a potential well. At a critical value of the pulling
force, a novel phase transition occurs in which the two
strands are pulled completely apart. Aspects of this tran-
sition for a homopolymer (or, equivalently, DNA with all
base pairs the same) have been studied in a related model
of a flux line in a type II superconductor [5,6]. Here, we
show that the transition is markedly different for random
heteropolymers. In particular, the number of monomers
liberated as the transition is approached diverges much
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more strongly for heteropolymers than for homopolymers;
similar differences appear in the specific heat. We calcu-
late exact critical exponents and crossover functions for the
random case.

Figure 1 sketches the DNA-opening experiment: One
of the two single strands of a dsDNA molecule is attached
to a glass slide, while a constant force F directed away
from the slide acts on the end of the other strand. Meth-
ods for exerting a constant force on the piconewton scale
have been developed by several groups [3,7]. Under the
influence of the force F, the DNA partially “unzips” at
one end, breaking m base pairs. In thermal equilibrium,
the degree of opening m is, of course, a fluctuating quan-
tity. Because the base sequence of protein-coding DNA
appears to many statistical tests to be random and uncorre-
lated along the backbone (at least up to a length scale set
by the sequence’s mosaic structure) [8], the free energy
landscape in which m fluctuates can be taken to have a
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FIG. 1. Sketch of the “unzipping DNA” experiment. One of
the single strands of a dsDNA molecule with a random base se-
quence is attached to a glass slide and the other is pulled away
from the slide with a constant force F. As a result, the two
strands partially separate, breaking m bonds (m � 2 in the fig-
ure). Inset: Schematic phase diagram in the temperature-pulling
force (T–F) plane for a dsDNA molecule in three dimensions.
At low T and F, the polymer is in the native, double-stranded
state. At the phase transition line Fc�T�, the DNA denatures
and the two strands separate. As indicated by the arrow, here
we consider the unzipping transition that occurs when the tran-
sition is approached away from the F � 0 melting tempera-
ture Tm.
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quenched random component. Bockelmann, Essevaz-
Roulet, and Heslot have performed an elegant series of
experiments in a different statistical ensemble, measuring
the average force required to hold the positions of both
single strands fixed [9,10]. However, because of subtleties
associated with the thermodynamic limit in a single
molecule system (see below), the two ensembles are not
equivalent.

In the remainder of this paper, we first introduce a
coarse-grained model for the interaction of the two single
strands of the dsDNA. By focusing on the unzipping tran-
sition induced by pulling on the single strands, we can
avoid treating most of the degrees of freedom explicitly,
obtaining a problem that can be solved exactly by a map-
ping to a Markov process. Although for concreteness we
will focus primarily on the DNA-opening realization of
our model, our results also apply to a number of related
physical systems, some of which will be described in the
conclusion. Throughout, we set kB � 1.

The bulk melting transition of dsDNA (see inset of
Fig. 1) can be described by a Peyrard-Bishop–like model
[11]. One views the two single strands as Gaussian poly-
mers whose nth monomers have positions r1�n� and r2�n�.
Below the melting transition, it should be possible to ne-
glect non-native base pairings. The interactions between
the two strands, coarse grained over a number of bases,
can then be described by a phenomenological potential
energy term Vn�r�n�� � �1 1 h̃�n��h�r�n��. Here h is a
short-ranged attractive potential whose strength is tempera-
ture dependent, r � r1 2 r2, and the variation with base
sequence of the strength of the attraction between strands is
described by h̃�n�, which we take to be a random variable
with short-ranged correlations. The effective Hamiltonian
then becomes, up to an uninteresting center of mass term,

Hmelt �
Z N

0
dn

Ω
Td
2b2

µ
dr
dn

∂2

1 Vn�r�n��
æ

, (1)

where d is the spatial dimension and b is
p

2 times
the Kuhn length of single-stranded DNA. Standard
arguments show that the partition function Zmelt �R
D �r�n�� exp�2Hmelt�T � obeys an (imaginary) time-

dependent Schrödinger equation.
The unzipping transition may be studied by adding

to Hmelt the term Hpull � F ? r�0� � F ? r�N� 2RN
0 dn F ? dr�dn. If the term proportional to r�N�, which

should not affect the opening near n � 0 for a sufficiently
long polymer, is dropped, a time-dependent version of
the “non-Hermitian quantum mechanics” studied in [6]
results. In the time-independent case (corresponding to
pulling apart homopolymeric dsDNA) there is a sharp
first order unzipping transition at a critical value of
the pulling force Fc satisfying e0�T � � 2F2

cb2��2dT �,
where e0 , 0 is the ground state energy of the Hermitian
quantum mechanics problem obtained by setting F � 0.
In general, 2F2b2��2dT � is the free energy per monomer
of the unzipped monomers aligned with the pulling force.
The free energy per monomer of the dsDNA that has
remained zipped is e0, independent of F. The physical
interpretation of the unzipping transition is thus clear:
For F , Fc�T �, the DNA minimizes its free energy
by remaining in the double-stranded form, while for
F . Fc it is advantageous to pull apart as many bases as
possible. As F ! F2

c , the free energy difference between
the bound, double-stranded phase and the pulled out,
single-stranded phase becomes very small, and thermal
fluctuations unbind a large number of monomers near
the end of the DNA. As the transition is approached,
the equilibrium ensemble average of the number m of
monomers that are pulled out diverges like

�m� 	 �Fc 2 F�21 �homopolymer� . (2)

Similarly, ��m 2 �m��2� 	 �Fc 2 F�22 near the transi-
tion. The thermal fluctuations about �m� are thus com-
parable to �m� itself. The divergence in (2) is analogous to
the divergence in interface height near a wetting transition.

We now determine how results such as (2) are modified
for a random DNA sequence. Sequence randomness is
at worst a marginal perturbation at the (F � 0) melting
transition in three dimensions [11–13]. The application
of a Harris-like criterion [14], however, shows that the
same cannot be true for the unzipping transition: The
typical variation per monomer in the base-pairing energy
of a pulled out section of length �m� scales like �m�21�2 	p

Fc 2 F, which vanishes more slowly as the transition
is approached than the relevant energy difference je0j 2

F2b2��2dT � 	 Fc 2 F. To determine the correct critical
behavior, we focus on the free energy cost of pulling out
a given monomer. Define E �m� to be the free energy of a
dsDNA molecule, subject to an applied force F, of which
exactly the first m monomers are unzipped. The change in
E from pulling out one additional monomer should have
the form

dE
dm

� f 1 h�m� , (3)

which may be integrated twice to obtain the partition func-
tion Z �

R
`
0 dm exp�2E �m��T �. Here f is the aver-

age free energy difference between an unzipped and a
bound pair of complementary monomers. It vanishes like
Fc 2 F near the transition, and reduces to the familiar
je0j 2 F2b2��2dT � in the absence of sequence random-
ness. The additional term h�m� takes account of se-
quence-dependent deviations from the average; it reflects
the bare sequence [described by h̃�m�], dressed by ther-
mal fluctuations. As long as h̃�m� is a random variable
with only short-ranged correlations, it is reasonable to ex-
pect that h�m� should also be short-range correlated, with
a correlation length on the order of the typical size j of the
regions of local melting of the dsDNA strand [15]. On long
enough scales, we can then take h to be Gaussian white
noise, with correlator h�m�h�m0� � Dd�m 2 m0�, where
the overbar indicates a “disorder average” over the possible
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realizations of the quenched random base sequence. The
parameters f and D may be calculated from the F � 0
partition function Zmelt, for example in a low temperature
expansion. The model summarized by Eq. (3) can also be
derived from a discrete, Ising-like description of the ds-
DNA [16], and it still holds both when the single strands
that have been liberated are characterized as freely jointed
or wormlike chains and when there are significant excluded
volume interactions [17].

The study of the unzipping transition can thus
be reduced to that of a single coordinate m in the
random potential E �m�. One immediate consequence
is that there is no large parameter that defines a
thermodynamic limit, and thus no equivalence between
the ensemble considered here and the conjugate
ensemble in which m is held fixed. Below the
unzipping transition, f . 0, and E �m� diverges with
probability unity as m ! `. In the ensemble studied
here, the unzipping fork is thus always confined to the
vicinity of m � 0. In the absence of randomness, the
probability of unzipping m monomers is
� f�T � exp�2mf�T �, and one recovers, e.g., (2). If there
is sequence randomness, the typical random contribution
to E �m� is of order

p
Dm; the random part thus exceeds

the average contribution fm, which is responsible for the
confinement, for m & D�f2. This length scale diverges
faster than 1�f as f ! 0, suggesting that a typical
value of m might show a 1�f2 divergence instead of the
nonrandom 1�f , with a crossover at f 
 D�T .

Because of the confinement near m � 0, the un-
zipping transition does not exhibit self-averaging (see
below). Nonetheless, one can still calculate averaged
quantities and distributions over the possible realizations
of randomness. To do this, one wishes to study the disor-
der-averaged free energy 2T lnZ. The partition function
Z̃�m� �

Rm
0 dm0 exp�2E �m0��T � of a finite-sized system

of m (bound or liberated) monomers satisfies

dZ̃
dm

� e2E �m��T and Z̃�0� � 0 ; (4)

Z follows simply by taking the limit of an infinitely long
polymer: Z � limm!`Z̃�m�. Together, Eqs. (3) and (4)
form a system of coupled Langevin equations, analogous,
for example, to those describing the Brownian motion of
a massive particle, with E playing the role of momen-
tum and Z̃ that of position. The associated Fokker-Planck
equation for the joint distribution P�E , Z̃; m� of E and Z̃
at “time” m follows in the usual manner [18]:

≠P
≠m

�

∑
D

2
≠2

≠E 2 2 f
≠

≠E
2 e2E�T ≠

≠Z̃

∏
P . (5)

By Laplace transforming with respect to Z̃ and to m, one
can solve (5) and obtain an exact expression for the partial
distribution

R
dE P�E , Z̃; m ! `� in terms of modified

Bessel functions of order 2fT�D; 2T lnZ and other ther-
modynamic quantities then follow by integration.
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The device of treating the quenched randomness
as a Langevin noise thus leads to a number of exact
results. In particular, the average degree of opening
�m� � 2T≠ lnZ�≠f satisfies

�m� �
2T2

DG�2fT�D�

Z `

0
dy y2fT�D21�lny�2e2y

2
2T2G0�2fT�D�2

DG�2fT�D�2 , (6)

where G0�z� � dG�z��dz. The small f behavior of Eq. (6)
is given by

�m� �
D

2f2 	 �Fc 2 F�22 �random heteropolymer� ,

(7)

confirming our expectations for a crossover from a 1�f to
a 1�f2 power law when f 	 D�T . Similarly, the singu-
lar part of the heat capacity associated with the unzipping
transition, C 	 ≠2 lnZ�≠T 2, crosses over from a 1�f2 to
a 1�f3 divergence. One can also compute the disorder-
averaged values of higher cumulants of m. For small f,
�m2� 2 �m�2 � T≠2 lnZ�≠f2 	 1�f3. Unlike in the non-
random case, the square root of this quantity diverges more
slowly than �m� 	 1�f2, indicating that thermal fluctua-
tions in m for a given realization of the quenched ran-
domness (and thus for a given heteropolymer) typically
become small compared to the mean value as the transi-
tion is approached.

A real space renormalization group approach to the
model of Eqs. (3) and (4) due to Le Doussal, Monthus,
and Fisher [19] gives further insight into the unzipping
transition. This technique gives leading order results in the
limit f ! 0, where the authors have argued that it should
be exact. In this limit, it allows one to calculate the dis-
tribution Q��m�� of thermal average values over different
realizations of randomness. This takes the form of a scal-
ing function of �m�f2�D:

Q��m�� �
f2

pD
e2��m�f2��2D

Z `

0
dw e2�w�m�f2��2D

p
w

w 1 1
.

(8)

This distribution yields the same asymptotic behavior of
�m� near the unzipping transition as the Fokker-Planck
approach. It also predicts that ��m� 2 �m��2 	 1�f4; �m�
for a polymer with a given random sequence of base pairs
can thus deviate significantly from the disorder average,
and this system is not self-averaging.

For the randomness-dominated critical properties re-
ported here to be observable, the variance D in the base-
pairing energy must be sufficiently large. Then at the
crossover from nonrandom to random behavior, f will also
be large, and the typical value of �m� 	 T2�D will be
small enough that finite-size effects do not become an is-
sue. In this respect, dsDNA appears to be a very good
candidate system. Under physiological conditions, the
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difference in free energy of binding between polymers with
only A-T base pairs and those with only G-C base pairs is
of order T , meaning that �m� is only a few monomers when
the crossover from pure to random behavior occurs.

In summary, we have described a randomness-
dominated unzipping transition of dsDNA, obtaining
exact expressions for the critical behavior and for the
crossover from random to nonrandom scaling. Most
notably, we find that when the base sequence is random
and has only short-ranged correlations, the average degree
of opening �m� diverges like 1��Fc 2 F�2 as the pulling
force F approaches a critical value Fc, in marked contrast
to the 1��Fc 2 F� divergence found when all of the
base pairs are identical. It should be possible to arrive
at analogous results for the case of DNA whose base
sequence has long-ranged correlations (as may be the
case for noncoding DNA [8]). If a typical variation about
the average energy grows like mb , then balancing this
against mf suggests �m� 	 1�f1��12b�; the short-range-
correlated case is recovered when b � 1�2. The biologi-
cal significance of our results remains to be determined:
Processes such as DNA replication and recombination
often involve unzipping of the dsDNA. Usually, however,
this is accomplished by a molecular motor relying on an
outside energy source, so nonequilibrium effects must
be considered. More generally, the dynamics of the
unzipping transition is an open question.

We have focused on the case of unzipping DNA, but our
results hold equally well for a number of more conven-
tional condensed matter systems described by the Hamil-
tonian Hmelt 1 Hpull [17]. The pulling of a Gaussian
random heteropolymer away from an adsorbing surface
is a natural extension of recent work on homopolymers
[20]. Other examples include a heteropolymer under ten-
sion pinned to a bulk defect [21], a magnetic flux line in a
type II superconductor confined to a fragmented columnar
pin and subject to a transverse field [6,12], and a simplified
model of the corner wetting transition in two dimensions
[22]. Related models are likely to be relevant to the trans-
verse surface magnetization and surface specific heat near
the Bose glass transition of a bulk superconductor [6] and
to adhesion in a random environment [23].

It is a pleasure to thank D. Branton, D. S. Fisher, and
T. Hwa for helpful conversations and T. Hwa for bringing
Ref. [24] to our attention. This research was supported by
the NSF through Grant No. DMR97-14725 and through
the Harvard MRSEC via Grant No. DMR98-09363.

Note added.—After this work was submitted for publi-
cation, we learned that related results had been obtained,
in a different physical context, for a discrete version of
Eqs. (3) and (4) [24].
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