
VOLUME 85, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 3 JULY 2000

154
Electronic Structure of Deformed Carbon Nanotubes
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Electronic structure of deformed carbon nanotubes varies widely depending on their chirality and
deformation mode. We present a framework to analyze these variations by quantifying the dispersion
relation and density of states. The theory is based on the Hückel tight-binding model and confirmed by
four orbital tight-binding simulations of nanotubes under stretching, compression, torsion, and bending.
It unriddles and unifies previous band gap studies and predicts the shifting, merging, and splitting of
Van Hove singularities in the density of state, and the zigzag pattern of band gap change with strains.
Possible applications to nanotube devices and spectroscopy research are also presented.

PACS numbers: 71.24.+q, 71.15.Fv, 71.20.Tx, 73.20.Dx
Single wall carbon nanotubes (SWNT) are of great
interest in mesoscopic physics and nanotechnology. The
predicted 1D electronic structure, especially Van Hove
singularities (VHS) [1], has been confirmed and used to
interpret experimental spectra obtained from scanning
tunneling spectroscopy [2], optical absorption, and reso-
nant Raman scattering [3]. Nanoscale SWNT transistors
[4] have been fabricated. In these studies, SWNTs may
be subjected to various mechanical deformations, which
may correlate to changes in electronic properties. For
instance, resistance of SWNT transistors was found to
vary significantly under bending and stretching [5]; and
an observed torsion of a metallic SWNT was speculated to
open a small band gap [6]. Several simulation studies have
shown that band gap of semiconducting SWNTs alters
widely depending on tube chirality and deformation mode
[7–11]. However, these experiments and simulations have
yet to be fully understood and bridged by a theory that
can provide a concise physics of the electronic coupling
to mechanical deformations.

In this Letter, we formulate a framework to predict
the dispersion relation and density of states (DOS) of
deformed SWNTs using the Hückel tight-binding (TB)
model. Significantly, the theory relates shifting of Fermi
point kF away from Brillouin zone vertices to tube chiral-
ity and strain. As a result, the electron states relative to
kF , and hence VHS and band gap, change accordingly to
the shift of kF . This theory unriddles and unifies previous
band gap studies and reveals rich band structure. It can be
employed to understand and guide experimental studies of
nanotube electronic devices and spectra.

Mintmire and White [12] successfully predicted the
electronic structure of undeformed SWNTs near Fermi
level using the Hückel TB model. We extend their
approach to deformed SWNTs. A �n1, n2� tube can be
viewed as a graphite sheet rolled up into a cylinder along
the 2D lattice vector R � n1R1 1 n2R2, where R1 and
R2 are graphene primitive lattice vectors. Electronic states
near kF can be analyzed from the central Brillouin zone
of graphene defined by the reciprocal lattice vectors Ki

satisfying Ki ? Rj � 2pdij in Fig. 1. For an undeformed
0031-9007�00�85(1)�154(4)$15.00
lattice, the Brillouin zone is hexagonal with kF sitting
at the vertices kV . The electronic states of a SWNT
allowed by the Born–von Kármán boundary condition
k ? R � 2pm lie on parallel lines perpendicular to R.
Near kF they are characterized by jk 2 kF j. A deformed
SWNT by uniaxial and torsional strains can be constructed
from a graphite sheet on which a uniform 2D strain tensor
´ � �´ij�232 is imposed. In the deformed graphene, real
space vectors are r � �I 1 ´�r0, where I � �dij�232 and
subscript 0 denotes undeformed states. We can show [13]
that using a k space transformation k � �I 1 ´�T k0, the
Brillouin zone and k lines remain invariant because in

FIG. 1. Top left: hexagonal central Brillouin zone with re-
ciprocal vectors K1 and K2, and k parallel lines for allowed
electronic states. Others: pictorial presentation of kF � kV 1
DkF and Eq. (1) in the circled vertex of the Brillouin zone for
three types of SWNTs n1 2 n2 � 3q 1 p. The kF is driven
away from the vertex kV by uniaxial strain with an angle of 3u
from axis c. The k lines near kF are shown for m � q and
q 6 1.
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the transformed k space Ki ? Rj0 � Ki0 ? Rj � 2pdij

and k ? R0 � k0 ? R � 2pm. This approach facilitates
analysis of variations in electronic states near kF with
strains. We need to consider only the change in kF

relative to invariant k lines jk 2 kF j.
kF is determined by solving E�kF� � jH�kF�j � 0.

For deformed graphene, the Hückel TB Hamiltonian
is H�k� � Stj exp�ik ? rj0� with Harrison hopping
parameter relation tj � t0�r0�rj�2 [14]. The sum is over
j � 1, 2, 3 for three bonds from a carbon atom with
a bond length rj and vector rj � �I 1 ´�rj0. Note
that the k space transformation k ? rj0 � k0 ? rj is
used in the Hamiltonian. Let kF � kV 1 DkF with
kV � �K1 2 K2��3 as circed out in Fig. 1 (equivalent
results are obtained for the other inequivalent hexagonal
Brillouin zone vertices). By expanding jH�kF�j � 0
to the first order terms of ´ and DkF , we obtain the
following for DkF [13]:

Dkc
Fr0 � �1 1 n�s cos3u 1 g sin3u ,

Dkt
Fr0 � 2�1 1 n�s sin3u 1 g cos3u .

(1)

Superscript t and c denote components along the tube axis
and circumference. s and g are strains along t and c, cor-
responding to uniaxial and torsional strains on nanotubes,
n is the Poisson’s ratio, and u is the tube chiral angle.

Equation (1) and kF � kV 1 DkF are the key to
understand and quantify electronic states of deformed
SWNTs near Fermi level. They are pictured in Fig. 1 for
three types of SWNTs classified by n1 2 n2 � 3q 1 p
with p � 0 (metallic) and 61 (semiconducting). From
them, we obtain [13] the dispersion relation of deformed
graphene by expanding E�k� at kF ,

E�k 2 kF� � 6jH�k 2 kF�j � 6
3
2 t0r0jk 2 kF j ,

(2)

and then DOS of deformed SWNTs, by following the ap-
proach of Ref. [12] and applying the boundary condition
k ? R0 � 2pm to the tube circumference
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where l is the central Brillouin zone length, m is the
quantum number, and D � jR0j�p is the tube diameter.
Equations (2) and (3) preserve the concise forms of the dis-
persion relation and DOS of undeformed structures [12].
Strain effects on the VHS intensity and position of DOS
are incorporated into l and Dkc

F through Eqs. (4) and (1),
respectively.

The DOS can be calculated using Eqs. (3), (4), and (1).
In this work, we take r0 � 1.42 Å, t0 � 2.66 eV, and
n � 0.20. To verify the applicability of the theory which
neglects tube curvature effects and higher order terms in
expanding H�k�, we have carried out simulations of band
structure of SWNTs of diverse tube chiralities and di-
ameters under various deformations using a four orbital
�s, px , py , pz� TB model with parameters from Ref. [15].
The simulation results are consistent with the theoreti-
cal predictions. As an example, Fig. 2 plots theoretical
and simulation DOS of three SWNTs under stretching de-
formation. A good agreement between the theory and

FIG. 2. DOS obtained from theory (solid lines) and simu-
lations (dashed lines) for three types of SWNTs n1 2 n2 �
3q 1 p with q � 6. Values on the right side are strains. The
first, second, and third VHS peaks are labeled by symbols 3,
�, and �. The critical strains to merge two VHS for tube (19,0)
are 2.7% and 3.2% from theory and simulation, respectively. A
small band gap of 0.02 eV at zero strain, caused by tube cur-
vature or hybridization effect, is seen by simulation, but not by
theory for tube (18,0).
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simulations is seen at lower strains and at lower energies.
We now use Fig. 1 and Eqs. (4) and (1) to understand the
band structure in Fig. 2.

Dkc
m in Eq. (4) measures the shortest distance between

kF and k lines of quantum number m in Fig. 1 and is re-
sponsible for the VHS positions Em in Fig. 2. The smallest
Em equals half the band gap. At zero strains, kF sits at kV .
If kV is taken as the origin, its nearest allowed k are at 2

3D ,
0, and 2

2
3D on the c axis for tubes p � 21, 0, and 1, re-

spectively [Eq. (4) with m � q and Dkc
F � 0]. For semi-

conducting tubes p � 61, the first nearest distance and
VHS at m � q are Dkc

q �
2

3D and jEqj � t0r0�D with a
band gap of 2jEqj, and the second ones are at m � q 6 1.
For metallic tubes p � 0, the first nearest distance and
band gap are zero at m � q, and the second nearest dis-
tance is k line spacing of Dkc

q61 � 2�D, giving rise to the
first VHS at jEq61j � 3t0r0�D.

When strain drives kF to shift away from kV by DkF ,
VHS positions and band gap change accordingly. The
nearest distance Dkc

q and band gap decrease for p � 21
tube but increase for p � 1 tube. For metallic tube p � 0,
a pair of new VHS near kF and a band gap [Fig. 2(b)
solid lines] are induced. The band gap change under small
strains can be derived from Eqs. (1) and (4):

DEgap � sgn�2p 1 1�3t0��1 1 n�s cos3u 1 g sin3u� .
(5)

Band gap change obtained from Eq. (5) and simulations
for various SWNTs under strains up to 1% are presented in
Fig. 3. An excellent agreement can be seen. Equation (5)
also explains and unifies previous band gap results [7–10].
The previously reported dependence of DEgap � 3t0s

[7,10] and 3t0g [8,10], respectively, for symmetric zigzag
�u � 0� and armchair �u � p�6� tubes are two special
cases of Eq. (5).

We now return to Figs. 1 and 2 for higher strains and
other VHS features. As kF moves between two k lines,
the first and second nearest distances (Dkc

q and Dkc
q61)

and VHS positions change in the opposite direction, mov-
ing either apart for tubes p � 21, or closer for tubes
p � 0 and 1. The remaining VHS positions vary in
alternating directions. We take tube p � 1 as an ex-
ample. The first and second VHS positions get closer as
the second and third positions separate. They will merge
as kF moves to the middle point between two k lines,
i.e., Dkc

q � Dkc
q11 � 1�D. This leads to a critical strain

sc � r0��3D�1 1 y� cos3u� and a band gap maximum
of 1.5Egap,0 using Eqs. (4) and (1). Beyond this strain,
the merged VHS splits, and the second VHS or Dkc

q11
approaches the Fermi level. This indicates that the band
gap maximum at VHS merging is due to electronic states
near kF jumping from quantum number m � q to q 1 1.
Similar changes and band gap maximum can also be seen
for the p � 0 tube while a higher critical strain 3sc is re-
quired. In contrast, for the p � 21 tube, the first pairs of
VHS merge as kF arrives at the nearest k line. This results
in a semiconductor-metal transition and the required criti-
156
FIG. 3. Band gap change of SWNTs of u � 0 2 p�6 and
D � 0.8 2 2.0 nm, under uniaxial strain (.0 for tension and
,0 for compression) and torsional strain (.0 for net bond
stretching and ,0 for net bond compression), obtained from
theory [lines, Eq. (5)] and simulation (symbols).

cal strain is 2sc. Once the kF crosses the k line, the tube
acts as an undeformed metallic tube. For any tubes, as kF

strolls among the k lines, it brings periodic shifting, merg-
ing, and splitting of two neighboring VHS in DOS, and a
zigzag pattern in band gap change. The predicted zigzag
pattern and simulation results are illustrated in Fig. 4. The
physics and basic features are reproduced although there
is a larger discrepancy at higher strains between the the-
ory and simulation. A similar pattern has been observed in
previous band gap studies [9] and can be well understood
from the present theory.

The above discussion was focused on uniaxial strains.
Torsion strain plays similar roles on kF and band structure,
but the effect of tube chirality is dramatically different for
uniaxial and torsion strains by factors cos3u and sin3u,
respectively, as shown in Eq. (1) and Fig. 3. Armchair
tubes are inert to uniaxial strain, but sensitive to torsion.
Zigzag tubes are the opposite. Other chiral tubes fall in
between.
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FIG. 4. Zigzag pattern of band gap for three SWNTs under
uniaxial strain, obtained from theory (solid lines) and simula-
tions (dashed lines and symbols).

The theory can be extended to tube bending. For pure
bending where bond stretching and compression cancel
each other along tube circumference, we predict that
DkF � 0 for any chiral tube and that VHS position and
band gap are invariant while VHS intensity increases
on the tensile side and decreases on the compression
side [13]. Our four orbital simulations verify this,
finding merely a 2% change in VHS position and band
gap before the tube buckles. Reference [8] found very
weak electronic coupling to bending of armchair tubes,
consistent with our results. However, tube bending seen
in experiments is usually not pure but accompanied by
stretching. Examples are SWNT devices where tube
ends are fixed to electrodes or on substrates [3–5]. In
these cases, significant change in electronic properties, as
observed [5], can be caused by stretching, as well.

The comprehensive DOS results of deformed nan-
otubes presented in this Letter have many applications to
nanotube research. For example, the shift of the kF

of a nanotube under deformation can change not only
electronic properties of the tube itself, but also the
contact resistance between the deformed tube and metal
electrodes. A low contact resistance can be reached by
shifting kF of the nanotube to that of the metal electrode
[16] through mechanical deformation. Thus, dramatic
change in the conductance of deformed nanotubes re-
ported in Ref. [5] may be related to the contact resistance
change caused by nanotube kF shifting in addition to the
tube electronic property change. It has been shown that
the width of two VHS peaks is consistent with that of
the peaks in the optical adsorption and resonant Raman
spectra for SWNT rope samples [3]. Thus, the observed
shifting and splitting of the spectral peaks for SWNT
ropes may be related to those of VHS peaks caused by
deformed nanotubes in the sample. The dependence of
VHS peak on tube chirality and deformation presented
in this work can be used to analyze the distribution of
deformation and tube chirality on individual nanotube as
well as tube diameter in the SWNT bundle sample.

In summary, we have formulated the dispersion relation,
DOS, and bandgap for deformed SWNTs from the Hückel
TB model. The theory preserves the concise form of that
of undeformed SWNTs by treating the Fermi point as a
function of strains and tube chirality. As the Fermi point is
driven by strains to move between and cross over allowed
electronic state parallel lines of different quantum num-
bers, VHS shift, merge, and split, and band gap paves a
zigzag pattern. Tube bending effect on DOS and band gap
rely on interaction between stretching and compression and
can be ignored if stretching and compression cancel each
other along the tube circumference. These predicted fea-
tures have been confirmed by four orbital TB simulations
and can be characterized by nanotube electronic device and
spectroscopy experiments.
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