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In this paper we introduce a new approach for calculating dynamical properties within the numerical
renormalization group. It is demonstrated that the method previously used fails for the Anderson impurity
in a magnetic field due to the absence of energy scale separation. The problem is solved by evaluating
the Green function with respect to the reduced density matrix of the full system, leading to accurate
spectra in agreement with the static magnetization. The new procedure provides a unifying framework
for calculating dynamics at any temperature and represents the correct extension of Wilson’s original

thermodynamic calculation.

PACS numbers: 71.27.+a, 75.20.Hr

Quantum impurity models and their low-temperature
properties are of central importance in condensed matter
physics. They show characteristic many-body effects such
as the screening of a local moment by conduction electrons
(the Kondo effect) which was first observed in measure-
ments on dilute magnetic impurities in metals (see [1]).
More recently, artificial nanostructures (quantum dots [2]
or surface atoms probed by scanning tunneling microscopy
[3,4]) with tunable parameters provided new representa-
tions of the Anderson or Kondo model [5,6]. In theory, a
very fruitful line of research was opened by the develop-
ment of dynamical mean-field theory (DMFT) [7], where
correlated lattice systems are mapped onto effective im-
purity models which are then accessible in a controlled
way [8].

In all of the above areas, progress depends sensitively
on the existence of a reliable calculational method that can
provide static and dynamic (spectral) properties in the full
energy range. Wilson’s numerical renormalization group
[9] gave the first quantitative description of the Kondo ef-
fect. In systems with very different energy scales (small
Kondo temperature Tk, large bandwidth), it is the only
technique that can do so. In the original calculation Wilson
focused on obtaining thermodynamic expectation values
such as the impurity susceptibility by iterative diagonal-
ization. Each iteration step was shown to correspond to
a certain temperature where expectation values could be
obtained with great precision. Later, the method was ex-
tended to zero temperature dynamical properties by several
groups and applied to a variety of problems [10,11], in-
cluding recent DMFT calculations (e.g., [12,13]). In these
calculations the additional assumption had to be made that
transitions from the ground state to higher excitations are
already correctly described in the first few iterations. Ac-
curate results in agreement with sum rules were obtained
for the single particle spectrum in the absence of exter-
nal fields. In the following, however, we demonstrate that
this procedure is not rigorous and fails for the Anderson
impurity model in a magnetic field. To remedy the de-
fect, we introduce a new approach based on the concept of
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the reduced density matrix. This procedure (which in the
following will be denoted as DM-NRG) makes use of the
full information contained in iterative diagonalization and
can therefore be considered as the correct extension of
Wilson’s original work to dynamical quantities.

To be specific, we consider the spin 1/2 Anderson model
H = Hy + Hjyp, where the impurity part is given by

Himp = V(f(-)r-c()a' + He) + Unping, — €rnp — hS)ZC

(D

Here we have introduced a local magnetic field /4 coupled
to the impurity spin S}, an on-site Coulomb repulsion U,
and a hybridization A = 7V?/2 to the conduction band
orbital ¢g,. Units are chosen as i = kg = g = up =
1. Depending on the energy of the impurity level, ey,
different physical behavior is realized. In the following, we
focus on the symmetric (e = —U /2) and mixed valence
(lef| = A) regimes. The conduction band (extending in
the range [—1, 1]) is already written in the linear chain
representation characteristic for NRG:

Ho = Y &nlclycpir, + He), )
n=0

where the hopping matrix elements decay exponentially
&, ~ A7"% due to a logarithmic discretization of the
conduction band. This model—while still a nontrivial
many-body problem—can now be solved by iterative
diagonalization, keeping in each step only the lowest,
most relevant levels. The number of iterations then corre-
sponds to the temperature one is interested in according
to Ty = cA~W ~D/2 where ¢ is a constant of order one.
For calculating static quantities, all necessary information
is thus obtained because only excitations on the scale
Ty are relevant. For dynamical properties, however, an
additional energy scale is provided by the frequency w
which may be much larger than the temperature. Let
us focus on the spin resolved single particle spectral
density,
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Ag(@) = D mlfHn)Ps(w — E, + Ey)

nm

in the Lehmann representation where the |n) are the many-
particle eigenstates of H, and Z is the partition function.
Obviously, spectral information at frequencies w > Ty
requires matrix elements between low-lying states and ex-
citations which in iteration N are not available anymore
(they have already been lost by truncation). To circumvent
this difficulty, the following procedure has been used thus
far: In calculating A(w), expression (3) was simply evalu-
ated in iteration step N’ << N, where Ty: = w, assuming
that for an analysis of this spectral regime the low energy
levels were described well enough. There is no rigorous
argument to justify this assumption, as, for example, the
crossover to the strong coupling fixed point and the corre-
sponding change in the ground state may occur at a much
lower temperature scale Tx << Ty.

In Fig. 1 we present results for the symmetric model (1)
at T = 0 which have been calculated in this way. With-
out external field, one obtains the well-known three-peak
structure characteristic for a small Kondo temperature Tk .
Switching on a small magnetic field & = O (Tx) affects
only the quasiparticle peak, while the high energy spec-
trum is almost unchanged. This result is easily understood:
In the iterations where the atomic levels are calculated, the
NRG procedure does not yet “know” about the tiny per-
turbation that eventually breaks the spin symmetry of the
ground state. One can, however, easily verify that this
result is incorrect: Calculating the ground-state magne-
tization m (a static quantity) directly as a thermodynamic
expectation value {((nst — ny)) and comparing with the
value derived from the spectrum,
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FIG. 1. Comparison of single-particle spectral functions for
the symmetric model (A = 0.01, U = 0.1, ¢, = —0.05) ob-
tained by the method previously used (“NRG”) and the general-
ized procedure presented here (“DM-NRG”). A small magnetic
field 2 = 0.001 has been applied to the impurity. Results for
the atomic levels differ strongly, whereas for the quasiparticle
peak both methods yield satisfactory agreement (inset).
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Z , 3)

the results do not agree (see Table I). Physically, the strong
polarization of the impurity due to a small magnetic per-
turbation should suppress the upper atomic level because
no particle excitations are possible anymore. This suppres-
sion is drastically underestimated by the method used thus
far (indeed, in the limit of vanishing Kondo temperature
Tk it will not be seen at all).

In order to capture this effect, it is clearly necessary to
obtain the correct ground state before calculating the spec-
tra. This is achieved by the following two-stage procedure.

(1) NRG iterations are performed down to the tempera-
ture T of interest; in particular, we choose Ty < Tk to
calculate ground-state properties. In each iteration step, we
keep the information on the transformation between one set
of eigenstates and the next, i.e., we save the corresponding
unitary matrix. After obtaining the relevant excitations at
temperature Ty, one can define the density matrix,

p=> e B/ |myy(ml, (5)

which completely describes the physical state of the sys-
tem. In particular, the equilibrium Green’s function can be
written as

Gi(1) = i6()THpL f1(0), £ ()]} 6)

(i) Now we repeat the iterative diagonalization for the
same parameters [alternatively, the full information could
be stored in (i)]. Each iteration step N’ yields the single-
particle excitations (and matrix elements of f 1) relevant at
a frequency w ~ Ty. But, instead of using (3), we now
employ (6) and evaluate the spectral function with respect
to the correct reduced density matrix [14]: As depicted
in Fig. 2, the complete chain is split into a smaller cluster
of length N’ and an environment containing the remaining
degrees of freedom. In the product basis of these two
subsystems, the full density matrix has the form

p= Z pmlnl,mznz|ml>env|nl>sys<n2| <m2| 5 (7
mymy
niny

which is, in general, not diagonal anymore. Performing
a partial trace on the environment then yields the density

TABLE 1. Impurity magnetization obtained by different meth-
ods: from the spectrum (mnrg VS MpMm.NrGg) and as a thermo-
dynamic expectation value (mgirect). Impurity parameters are
chosen as A = 0.01 and U = 0.1.

h MNRG MDM-NRG Mirect
0.0005 0.09 0.46 0.44
0.001 0.16 0.61 0.60
0.003 0.36 0.77 0.75
0.005 0.49 0.81 0.80
0.01 0.68 0.87 0.84
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FIG. 2. Reduced density matrix obtained by tracing out “envi-
ronment” degrees of freedom of the chain.

submatrix,

Ared Z pn1n2|n1>§y§<n2| (8)

niny

with
P = Doy, - 9)
m

This projection is easily done using the previously stored
unitary transformation matrices. Note that p™¢ —defined
only on the shorter chain—contains all the relevant in-
formation about the quantum mechanical state of the full
system. This concept has been applied very successfully in
the density matrix renormalization group [15], where the
projection on a smaller subsystem is essential for obtain-
ing eigenstates of the model. In NRG, on the other hand,
diagonalization can be performed directly due to the loga-
rithmic discretization, but to describe the effect of the chain
degrees of freedom on the impurity (or a small cluster) one
has to determine p™d. In the following, we therefore refer
to the calculational scheme presented here as DM-NRG.
In Fig. 1 we compare the spectrum calculated by the
DM-NRG to the one obtained with the NRG version used
so far in the literature (the same number of levels has been
used in both calculations). The strong shift of spectral
weight due to the polarized impurity is now clearly seen,
as well as a slight change in the height and shape of the
quasiparticle peak. The magnetization has been calculated
from (4) for different values of /4 and is in good agreement

Ar(w)
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FIG. 3. Shift of the spectral function with increasing magnetic
field at zero temperature. The impurity parameters are chosen
as A = 0.01 and U = 0.1.
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FIG. 4. Temperature dependence of the spectrum at A = 0.1,
U = 1.0, and 7 = 0.04. Note that at frequencies @ << T NRG
does not yield any information. In this region the curves are
fitted.

with the static calculation (see Table I). The remaining
deviation of about 3% is due to an error in the total spectral
weight.

The resulting field dependence of the spectrum is dis-
played in Fig. 3. With increasing h, the Kondo reso-
nance is suppressed and eventually merges with the lower
atomic level. Regarding the total density of states (DOS)
A(w) = >, A,(w), the Kondo peak is split by the field
and the DOS at the Fermi level strongly reduced. This
effect has been observed directly in measurements of the
differential conductance through a quantum dot [2].

Thus far, calculations have been at 7 = 0. Upon in-
crease of the temperature at a finite magnetic field, we
expect a reduction of the average impurity magnetization
due to thermal fluctuations. As a consequence, particle
excitations with polarization in the field direction should
gain spectral weight. In Fig. 4, this effect is obvious: At
temperatures 7 = h, the asymmetry in Aj(w) is strongly
reduced. Note that, in finite temperature NRG calcu-
lations, no spectral information can be obtained at fre-
quencies w < T. This important fact will be discussed
in detail in a subsequent publication.
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FIG. 5. Spin dependent spectral density at zero temperature

for the asymmetric impurity with A = 0.01, U = 0.1, and

e = —0.02.
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FIG. 6. Total spectral density A« = Ay + A| at zero tempera-
ture for the asymmetric impurity with A = 0.01, U = 0.1, and
€ = —0.02. Note that upon increasing h part of the spectral
weight is shifted to the upper atomic level (not shown). The
total weight is constant with high accuracy.

Results for an asymmetric impurity close to the mixed
valence regime are shown in Fig. 5. The almost complete
shift of spectral weight to the particle (hole) sector is again
observed for the two spin polarizations, which in this case
are not symmetric anymore. In the total DOS (Fig. 6),
changes are less prominent. We merely observe a suppres-
sion of the quasiparticle peak and a redistribution of the
corresponding weight to higher frequencies.

Comparing our findings to previous calculations, it
should be pointed out that until now only the modified
perturbation theory [16] and the quantum Monte Carlo
method (QMC) [17] have been applied to calculate the
impurity spectrum in a magnetic field. The former is
limited to small U, while QMC calculations have thus
far been done only in the mixed valence regime (and at
temperatures 7 = Tk ) due to the increase in computing
cost for the symmetric case. In a recent NRG calculation
on the Kondo model [18], the problems discussed here
did not occur due to the absence of atomic levels. Apart
from these restrictions, we find qualitative agreement with
our results.

In conclusion, we have presented a new method for
calculating dynamical properties at arbitrary temperatures
within the numerical renormalization group. It has
been demonstrated that—despite logarithmic discretiza-
tion—energy scale separation is, in general, not valid in
the case of spectral quantities. This effect is neglected in
the NRG scheme used so far in the literature. Within our
generalized procedure (DM-NRG), based on the reduced
density matrix, we can now account for changes in the
ground state occurring at energies far below the external
frequency scale.

The method introduced here has been applied to the An-
derson impurity in an external magnetic field, which is of
great interest in view of recent transport measurements of

quantum dots. Nonperturbative 7 = 0 studies have not
been performed thus far, mainly because of technical dif-
ficulties in extending NRG to systems with broken spin
symmetry. Our spectral results are in excellent agreement
with the sum rule provided by the (static) magnetization.
In the total density of states, we find the splitting and sup-
pression of the quasiparticle peak which is also observed
experimentally.

Future applications of the DM-NRG include DMFT
calculations for phases with long range order, where
symmetry-breaking perturbations and their effect on the
spectrum have to be treated reliably. In addition, more
complex impurity systems including orbital degeneracy
may be studied, which (due to the rapid advances in
nanoscale preparation techniques [19]) are of growing
experimental interest.
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