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Electronic properties of heterojunctions between metallic and semiconducting single-wall carbon nano-
tubes are investigated. Ineffective screening of the long-range Coulomb interaction in one-dimensional
nanotube systems drastically modifies the charge transfer phenomena compared to conventional semicon-
ductor heterostructures. The length of depletion region varies over a wide range sensitively depending
on the doping strength. The Schottky barrier gives rise to an asymmetry of the I-V characteristics of
heterojunctions, in agreement with recent experimental results by Yao et al. and Fuhrer et al. Dynamic
charge buildup near the junction results in a steplike growth of the current at reverse bias.

PACS numbers: 71.20.Tx, 73.23.–b, 73.30.+y
Single-wall carbon nanotubes (SWNTs) are giant linear
fullerene molecules which can be studied individually by
methods of nanophysics [1]. Depending on the wrapping
of a graphene sheet, SWNTs can either be one-dimensional
(1D) metals or semiconductors with the energy gap in sub-
electronvolt range [2,3]. While metallic nanotubes can
play a role of interconnects in future electronic circuits,
their semiconducting counterparts can be used as basic ele-
ments of switching devices. An example is the field ef-
fect transistor on semiconducting SWNT operating at room
temperature [4].

Of particular interest are all-nanotube devices [5]. The
simplest can be fabricated by contacting two SWNTs with
different electronic properties. The SWNTs can be seam-
lessly joined together by introducing topological defects
(pentagon-heptagon pairs) into the hexagonal graphene
network [6]. The resulting on-tube junction generically has
the shape of a kink. Electronic properties of such junctions
have been investigated theoretically (see, e.g., Refs. [7]
and [8]) within the model of noninteracting electrons.

Electron transport in nanotube heterojunctions has been
studied in two recent experiments. Yao et al. treated junc-
tions in SWNTs with kinks [9] whereas Fuhrer et al. ex-
plored contacts of crossed nanotubes [10]. Both groups
observed nonlinear and asymmetric I-V characteristics re-
sembling that of rectifying diodes. On one hand, the rec-
tifying behavior can be naturally interpreted in terms of
Schottky barriers (SBs). On the other hand, formation of a
SB might be surprising since one expects no charge trans-
fer in junctions between two SWNTs made of the same
material.

A possible reason for the charge transfer might be the
doping of the nanotubes forming the heterojunction [11].
The doping can be caused by introduction of dopant atoms
into the nanotubes or by charge transfer from metallic elec-
trodes. In the latter case the doping strength can also be
controlled by the gate voltage. It is important to mention
that screening of the Coulomb interaction is ineffective in
one-dimensional nanotubes. For this reason the effect of
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the doping is long ranged: the density of the transferred
charge decays slowly with the distance from the electrodes
and might be appreciable at the heterojunction [12].

The long-range Coulomb interaction should be properly
taken into account when treating the charge transfer
in the heterojunction itself. Unfortunately, this was not
accomplished in Ref. [11], where the electric field was
assumed to be fully screened in the region of a few atomic
layers near the junction. In this Letter, we study charge
transfer phenomena in nanotube heterojunctions with
true long-range Coulomb interaction. We concentrate on
the metal-semiconductor SWNT junction and analyze its
equilibrium and nonequilibrium properties (SB parame-
ters, I-V characteristics) by solving the Poisson equation
self-consistently.

As a model system we consider “straight” junction [13]
between metallic (x , 0) and semiconducting (x . 0)
SWNTs (Fig. 1). We assume that the conducting pz elec-
trons in SWNTs are confined to the surface of a cylinder
of radius R. The nanotubes are surrounded by a coaxial
cylindrical gate electrode of radius Rs ¿ R. The Fourier
components of the 1D Coulomb interaction are given by

Uq �
2e2

k

Ω
I0�qR�K0�qR� 2

I2
0 �qR�K0�qRs�

I0�qRs�

æ
, (1)

with the dielectric constant of the medium k and the modi-
fied Bessel functions I0, K0. Equation (1) describes the
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FIG. 1. Heterojunction between metallic (M) and semicon-
ducting (SC) nanotubes. The potential Vg is applied to a cylin-
drical gate electrode of radius Rs.
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long-range Coulomb interaction, U�x� � 1�kx, for R ø
x ø Rs. The interaction is screened at large distances
x ¿ Rs, so that U0 � e2�C � �2e2�k� ln�Rs�R�, C be-
ing the capacitance of SWNT per unit length. The kernel
(1) relates the electrostatic potential w at the surface of
SWNTs to 1D charge density er (e . 0),

ewq � Uqrq . (2)

Since experimental values [9,10] of the conductance of
heterojunctions are small, G��e2�h� & 1022, we will as-
sume low transparency T ø 1 of the barrier between two
SWNTs. In this case the electrons in the nanotubes are
described by the equilibrium Fermi distribution f�E�, also
when the voltage V is applied to the system.

In equilibrium, the charge density is related to the en-
ergy Ẽ0�x� � E0�x� 2 EF�x� of the gapless point (charge
neutrality level) of graphite E0 counted from the Fermi
level EF ,

r�x� �
Z

dE sgn�E�n�E�f��E 2 Ẽ0�x�� sgn�E�� , (3)

with the density of electronic states n [14]. Equation (3)
is valid provided that Ẽ0�x� varies slowly on the scale of
the Fermi wavelength.

We will neglect the effect of higher 1D subbands in
SWNTs. This is legitimate at low energies, jẼ0j , D�1�

and kBT ø D�1�, where D�1���h̄yF�R� � 1 �2�3� for
metallic (semiconducting) SWNT. The densities of states
in metallic and semiconducting SWNTs are given by

nM �
4

p h̄yF
, nS �

4
p h̄yF

jEjQ�jEj 2 D�
p
E2 2 D2

, (4)

with the Fermi velocity yF � 8.1 3 105 m�s and the en-
ergy gap 2D � 2h̄yF�3R in semiconducting SWNT (D �
0.3 eV for generic SWNTs [2] with R � 0.5 0.7 nm).

In the limit of zero temperature Eq. (3) may be in-
verted as

Ẽ0�r� �

Ω
r�nM , x , 0 ,p

D2 1 �r�nM�2 sgn�r�, x . 0 .
(5)

The charge neutrality level Ẽ0�x� is related to the electro-
static potential (2),

Ẽ0�x� 1 ew�x� � m 1 eV sgn�x��2 , (6)

m 7 eV�2 being the electrochemical potentials for holes
in metallic and semiconducting SWNTs. The potential
m � a�DW 2 eVg� can be controlled by the gate voltage
Vg (Fig. 1). It also incorporates the difference DW �
WM 2 WNT of the work functions of the gate electrode
and SWNT [15] (the coefficient a characterizes mutual
capacitance of the nanotubes to the gate and is equal to
unity in our case).

We solve Eqs. (2), (3), and (6) self-consistently by nu-
merical minimization of the corresponding energy func-
tional. The Coulomb energy is computed in the Fourier
space. Figures 2 and 3 display the results for the following
parameters: Rs�R � 75 and nMU0� ln�Rs�R� � 5. The
FIG. 2. The charge neutrality level Ē0 and the energies of the
conduction Ec and valence Ey bands as functions of the dis-
tance from the junction (a)– (e). The Fermi levels are shown by
dashed lines. The I-V characteristics of the heterojunction at
zero temperature (f ). All the energies (Ē0, Ec, Ey , m, eV ) are
in units of D; the current is in units of 2eDTi��p h̄�. The I-V
curves for m � 1.5, 3 are offset for clarity.

latter value corresponds to the dielectric constant k � 1.4
which can be inferred from the experimental data (see
Fig. 4 of Ref. [1]).

The band bending diagrams (Fig. 2) display the
charge neutrality level Ē0�x� � Ẽ0�x� 2 eV sgn�x��2
counted from the “average” Fermi level of metallic and

FIG. 3. The height u of the Schottky barrier (a) and the current
I through the heterojunction (b) at zero temperature as functions
of the electrochemical potential m and bias voltage V . The con-
tour lines (a) correspond to u�D � 0, 0.1, . . . , 0.9 from periph-
ery to origin. The energies m, eV are in units of D. The current
is in units of 2eDTi��p h̄�.
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semiconducting SWNTs, as well as the energies Ec,y �
Ē0 6 D of the conduction and valence bands in semicon-
ducting SWNT.

Let us start from the case of zero bias, V � 0 [Figs. 2(a)
and 2(b)]. At zero electrochemical potential, m � 0,
the Fermi level of the nanotubes coincides with the
gapless point of graphite and the system is charge neutral
[Fig. 2(a)]. This situation occurs for isolated nanotubes.
The barriers for the electron and hole transport are
equal to D.

To make contact with the experiments [9,10] we will
concentrate on p-doped SWNTs (m . 0). Because of a

larger number of electronic states
RẼ0

0 dE n�E� the metallic
SWNT acquires more charge and has higher electrostatic
potential w�2`� [lower charge neutrality level Ẽ0�2`�]
compared to semiconducting SWNT kept at the same elec-
trochemical potential; see Eqs. (5) and (6). The electric
field induced by this charge bends the bands in the semi-
conducting SWNT downwards so that a SB is formed near
the interface [Fig. 2(b)].

For jmj , D, there are no free charges in the semicon-
ducting SWNT. Our numerical results indicate that the
electrostatic potential w�x� decays logarithmically at R ø
x ø Rs so that the band bending extends over long dis-
tances x 	 Rs [the analytical estimate, w�x� � enMm 3

ln�Rs�x��k, is available in the limit of weak interaction,
nMU0 ø 1]. At m � D holes enter the semiconducting
SWNT. With increasing the electrochemical potential the
holes come closer to the junction reducing the length l and
the height u of a SB [Fig. 2(b)]. In the case of weakly
doped semiconducting SWNT, m � D�1 1 d�, d ø 1,
a rough estimate of the depletion length l can be made,
ln�l�Rs� 	 d ln�R�Rs�, for R ø l ø Rs. Therefore, the
depletion length changes rapidly from l 	 Rs to l 	 R
with increasing doping in this regime. The height of a SB
can be estimated from the difference of the charge neu-
trality levels in semiconducting and metallic SWNTs, u &

Ẽ0�`� 2 Ẽ0�2`�. The latter evaluate at Ẽ0�2`� � m�
�1 1 nMU0� and Ẽ0�`� � D for d ø nMU0; see Eqs. (2),
(5), and (6). Since the band bending occurs predomi-
nantly in the semiconducting part [Figs. 2(a) and 2(b)] and
nMU0 ¿ 1, one expects that u � D for d ø nMU0.

Figure 3(a) shows the result for the SB height u defined
as the minimum energy of electron or hole excitation re-
quired to transfer the elementary charge across the junction
in the absence of tunneling through the SB. The SB height
shows pronounced asymmetry as a function of the bias
voltage. At small electrochemical potential the SB height
at forward (reverse) bias is determined by the energy of the
valence (conduction) band in the “bulk” of semiconducting
SWNT, x ! `, with respect to the Fermi level, u

�b�
f�r� �

D 7 Ẽ0�`�, with Ẽ0�`� � m 1 eV�2 [Fig. 2(d)]. This
corresponds to straight portions of contour lines in the
lower part of Fig. 3(a). In particular, the positive V1 and
negative V2 threshold voltages at which the SB vanishes

(u
�b�
f�r� � 0) are given by eV

�b�
6 � 62D 2 2m.
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Straight portions of contour lines [Fig. 3(a)] are inter-
rupted by cusps. At forward bias the cusps occur along
the line eV � 2m [Fig. 3(a)] where the charge density
in metallic SWNT and the band bending change sign;
see Eq. (6). Above the point of a cusp, the height of a
SB at forward (reverse) bias corresponds to the energy
of the valence band at the interface of SWNTs, x � 0,
counted from the Fermi level of semiconducting (me-
tallic) nanotube, u

�i�
f�r� � D 2 Ẽ0�60� [Fig. 2(c)]. The

threshold voltages V
�i�
1�2�, correspond to suppression of a

SB at the interface, u
�i�
f�r� � 0. Note that at m * D�2 the

positive threshold eV
�i�
1 � D is relatively insensitive to

the electrochemical potential, Fig. 3(a). This can be used
for a rough estimate of the gap from experimental data.

We will proceed with the analysis of nonequilibrium
electron transport. The current through the heterojunction
is given by the Landauer formula,

I �
2e
p h̄

Z
dE T �E� � f�E 2 eV�2� 2 f�E 1 eV�2�� ,

(7)

with the energy-dependent transmission coefficient T �E�
of the junction. It is natural to separate the contribution
Ti�E� of a barrier at the interface between SWNTs [8] and
the contribution TS�E� of a SB to the total transmission.
As a minimal model, we assume that the transparency Ti

is energy independent, whereas the transparency TS�E� in-
creases from zero to unity when the energy E crosses the
edge of a SB. In this case the total transmission reads
T �E� � 0, �Ti�, for the energies in (out of) the SB range
�Emin,Emax�. In the case of downward bending (Fig. 2)
the SB range is given by �Ey�0�,Ec�`��, in the absence of
charge carriers in the conduction band, m 1 eV�2 . 2D

[Figs. 2(a)–2(d)], and by �Ey�0�,Ec�0��, in their pres-
ence, m 1 eV�2 , 2D [Fig. 2(e)]. The results for the
I-V characteristics at zero temperature are presented in
Figs. 2(f) and 3(b).

At low electrochemical potential the current increases
abruptly at positive V

�b�
1 and negative V �b�

2 threshold volt-
ages which correspond to inclined straight lines in the
lower part of Fig. 3(b) [see also Fig. 2(f)]. At the posi-
tive (negative) threshold, u

�b�
f�r� � 0, the electrons enter the

valence (conduction) band in the bulk of semiconduct-
ing SWNT. This causes charge buildup near the junction
which, in turn, leads to the reconstruction of the band pro-
file [cf. Figs. 2(d) and 2(e)]. The reconstruction results in
the onset of the hole and electron (at reverse bias) channels
of transport [Fig. 2(e)] giving rise to a steplike growth of
the current.

At higher electrochemical potential the onset of the cur-
rent at the thresholds V

�i�
1 , V �i�

2 occurs gradually [Figs. 2(f)
and 3(b)] due to opening of the hole transport channel
[Fig. 2(c)]. The cusp at the I-V characteristics [Fig. 2(f)]
at somewhat higher voltages (V . V

�i�
1 ) corresponds to the
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onset of the electron channel. Note that at high (forward
or reverse) bias both the electron and hole channels are
open so that the current is given by I � �2eTi�p h̄� �eV 2

2D sgn�V ��.
We now consider quantum tunneling through a SB. The

transparency TS�E� of a SB can be evaluated using the
WKB method and the effective mass approximation. For a
triangular barrier of the length l and the height u we obtain

TS 	 exp

"
2

4l
9R

s
2u
D

#
. (8)

The transparency TS increases considerably near the
boundaries of the transport blockade region �V2,V1�
[Fig. 3(a)] due to decreasing u and l. For example, TS 	
2.5 3 1023 for the SB in Fig. 2(b), whereas TS 	 1
for the SBs in Figs. 2(c) and 2(d). This gives rise to a
substantial leakage current in the blockade region.

The asymmetry of the I-V characteristics and threshold
voltages has been discovered in recent experiments [9,10].
According to the data of Ref. [9], both the thresholds V1,
V2 shift upwards with the gate voltage. Moreover, the
positive threshold shifts less than the negative one. Such
behavior is consistent with our model in the regime of
moderate doping, 0.5 , m�D & 1.8 (Fig. 3). However,
the blockade region of 3 4 V detected in the experiment
is somewhat wider than the theoretical estimate, V1 2

V2 & 6.5D � 2 eV. The extra voltage drop could be due
to potential disorder in semiconducting SWNT [16] and/or
an additional SB at the interface between semiconducting
SWNT and metallic electrode.

We now check the model against the experimental data
of Ref. [10]. The measured width of the blockade region,
0.5 0.7 V, agrees with the theoretical estimate. The gap in
semiconducting SWNT, D � eV1 , evaluates at D � 0.19,
0.29 eV for the two devices studied [10]. These values are
in the expected range D 	 0.25 0.35 eV [2,3]. A smooth
onset of the current over the range 	0.1 0.3 eV around
threshold voltages is naturally associated with quantum
tunneling through a “leaky” SB (thermal energies are much
smaller, kBT � 5 meV). Finally, the steplike feature of the
current under reverse bias almost certainly corresponds to
the reconstruction of the band profile due to the Fermi level
entering the conduction band of semiconducting SWNT.
Gradual onset of the differential conductance following the
reconstruction might be associated with increasing con-
ductance of disordered semiconducting SWNT under the
doping [16].

To conclude, we have studied the electronic properties of
carbon nanotube heterojunctions and provided explanation
for the main features of recent experimental data [9,10].
Because of the long-range Coulomb interaction, the charge
transfer phenomena in one-dimensional nanotube systems
differ drastically from those in conventional semiconductor
heterostructures. This creates new challenges in the design
of novel electronic devices. In particular, the long-range
electrostatic potential in underdoped junctions might affect
other components of a circuit, whereas substantial leakage
current in overdoped junctions spoils the rectification. In
view of these challenges a new concept of functional de-
vices on molecular level might be needed.

In the process of writing this paper I became aware of
the preprint by Léonard and Tersoff [17] who investigated
equilibrium properties of junctions between semiconduct-
ing SWNTs and found the long-range charge-transfer phe-
nomena in these systems (see also Ref. [12]).
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