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n ! `̀̀ Limit of O���n��� Ferromagnetic Models on Graphs
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Thirty years ago, H. E. Stanley showed that an O�n� spin model on a lattice tends to a spherical
model as n ! `. This means that at any temperature the corresponding free energies coincide. This
fundamental result is no longer valid on more general discrete structures lacking in translation invariance,
i.e., on graphs. However, only the singular parts of the free energies determine the critical behavior of
the two statistical models. Here we show that for ferromagnetic models such singular parts still coincide
even on graphs in the thermodynamic limit. This implies that the critical exponents of O�n� models on
graphs for n ! ` tend to the spherical ones and depend only on the graph spectral dimension.

PACS numbers: 64.60.Cn, 64.60.Fr, 75.10.Jm
The study of spin models on noncrystalline struc-
tures is an intriguing and complex problem in statistical
mechanics. This is fundamentally due to the lack of
translational invariance and of a natural definition for the
system dimensionality. The former gives rise mainly to
technical difficulties, arising from the impossibility of
using such a powerful tool as Fourier transforms. The lat-
ter involves some deeper questions concerning the role of
large scale geometry in phase transitions on important real
structures such as amorphous solids, glasses, polymers,
and fractals.

Recently, these problems have been successfully ad-
dressed using graph theory. A graph, i.e., a network com-
posed of sites and links connecting nearest-neighboring
sites, is the most suitable geometrical model to describe
an irregular system consisting of spins coupled by local in-
teractions. In particular, algebraic graph theory gives very
interesting results when dealing with continuous symme-
try models, due to the evidence for deep relations between
their critical behavior and the small eigenvalues spectrum
of the Laplacian operator.

One of the most representative models in this class is
the O�n� model, which describes a classical n-dimensional
spin vector of fixed length. It is not in general exactly
solved, but a few analytic results have been obtained
on lattices. For example, the lower critical dimension
for spontaneous symmetry breaking is known from the
Mermin-Wagner theorem and the n ! ` limit, which
corresponds to the spherical model, can be exactly solved
on any lattice. These results provide the basis for a
qualitative understanding of the phase diagram as well as
for the 1�n expansion of thermodynamical quantities and,
in particular, of critical exponents.

As for graphs, while an extension of the Mermin-
Wagner theorem to non-translation-invariant structures
has been proven [1], the n ! ` result for O�n� models
heavily relies on the invariance properties of the lattice
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and therefore cannot be easily generalized. Indeed the
equivalence between an infinite component model with
local constraints and a model with a global constraint on
the spin is lost as a consequence of the lack of symmetry.
The extension of this result to a generic discrete structure
would be an important step in the comprehension of
continuous symmetry models and in particular of their
phase diagrams and universality classes. In this Letter, we
deal with such a problem.

We show that on a graph, although the free energy of
O�n� models in the n ! ` limit at a generic temperature is
not in general equivalent to the corresponding free energy
of the spherical model, the singular parts of the two free
energies coincide. Therefore on a generic discrete structure
the equivalence is retrieved asymptotically near the critical
point and it holds for critical exponents, which can be
shown to depend only on the spectral dimension of the
network. This result strongly supports the possibility of a
global geometrical characterization of irregular networks
in the critical region, affecting all phenomena related to
large scales.

The ferromagnetic classical O�n� Heisenberg model is
defined by the Boltzmann weight exp�2bHn�, where

Hn�S� �
1
2

X
�ij�

Jij�Si 2 Sj�2, (1)

the sum extends to all links of a certain graph G with N
sites, Jij . 0 are ferromagnetic interactions which may
vary from link to link, and Si is an n-dimensional vector of
fixed length normalized by Si ? Si � n. The free energy
per component is defined by

fn�b� � 2
1

Nn
1
b

logZ , (2)

where the partition function reads

Z �
Z Y

i

d�Si ? Si 2 n� dSi e2bH . (3)
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We shall assume the existence of the thermodynamic limit
N ! ` which turns G into an infinite graph within a cer-
tain class to be better specified in the sequel.

The classical fundamental result originally due to [2] ap-
plies when G is a regular lattice (e.g., a hypercubic lattice);
it establishes a rigorous relation between O�n� models in
the n ! ` limit and the spherical model. The latter is
defined, on the same graph G of the O�n� model, by the
Boltzmann weight e2bHS

with Gaussian Hamiltonian

HS �
1
2

X
�ij�

Jij�fi 2 fj�2 (4)

and the spherical constraint
P

i f
2
i � N , where fi are real

scalar variables. In the thermodynamic limit N ! ` we
are allowed to replace (4) by

HS �
1
2

X
�ij�

Jij�fi 2 fj�2 1
1
2

m2
X

i

�f2
i 2 1� , (5)

where the “mass” parameter m2 is fixed to be a precise
function of temperature i.e., m2 � m�b�, by the spherical
constraint “on the average”

lim
N!`

1
N

X
i

�f2
i � � 1 . (6)

Since HS is Gaussian, one finds

fS�m2� � 2 lim
N!`

1
Nb

logZS

�
1

2b
log det�L 1 m2� 2

m2

2
, (7)

�fifj� �
1
b

�L 1 m2�21
ij

where Lij � Jidij 2 Jij , with Ji �
P

j Jij , is a discrete
Laplacian operator on G . At this stage it is convenient
to better specify the class of infinite graphs and couplings
with which we are concerned: we shall assume that G can
be naturally embedded in a finite dimensional Euclidean
space and that Ji is uniformly bounded over G . For our
class of graphs a generic quantity qi , related to a single
point i, can be averaged in a unique way over G by �q�G �
limN!` 1�N

P
i qi . The measure jG0j of a subgraph G0

is given by the average value of its characteristic function

x
G0

i , defined by x
G0

i � 1 if i [ G0 and xi � 0 otherwise:
jG0j � �x�G . The asymptotic behavior of the model in the
massless limit m2 ! 0 is related to the spectrum of the
Laplacian operator at low eigenvalues [3]. In particular,
we have the following singular behaviors as m2 ! 0:

sing ��L 1 m2�21�G � sing lim
N!`

1
N

NX
i�1

�L 1 m2�21
ii

� C0 �m2��d�2�21, (8)

which define the spectral dimension d̄ of the graph. To-
gether with Eqs. (6) (which now reads ��f2��G � 1) and
(7), Eq. (8) determines the asymptotic form of the function
m2 � m�b�, that is m�b� 	 b2��d̄22�, b ! ` for d̄ , 2,
m�b� 	 �bc 2 b�2��d̄22�, b ! b2

c for 2 , d̄ , 4, and
m�b� 	 bc 2 b for d̄ . 4, where bc � �L21�G . In turn
this implies that the free energy of the spherical model [see
Eq. (7)] has the asymptotic form near the critical point

fS���m�b���� 
 fS�0� 1 O���m�b����. (9)

The infrared singularity of ��L 1 m2�21�G is deter-
mined by the large scale topology of the graph G . For most
infinite graphs, if G0 is a subgraph of G with positive mea-
sure, jG0j . 0, the infrared singularities of ��L 1 m2�1�G
and ��L 1 m2�1�G0 coincide and are described by the
same spectral dimension d̄ and the same coefficient C0 of
the singular part, i.e., sing ��L 1 m2�21�G � sing ��L 1

m2�21�G0 . This is the case for all fractals (such as
Sierpinski gasket and carpet, t fractals, and so on),
bundled graphs (comb lattices, brushes, . . .), and many
other networks (e.g., NTD [4]), which we will call
“pure graphs.” The result is obtained [5] starting from
the diagonal terms

P
k�L 1 m2�ik�fkfi� � 1 of the

Schwinger-Dyson equation, taking its averages over G0

and over G and following steps very close to those in
[6]. This proof does not hold for a very peculiar class of
macroscopically inhomogeneous networks, obtained, for
example, by sticking together two or more pure graphs
(factors) with different spectral dimensions by a zero-
measure set of links. In these cases, which we will call
“mixed graphs,” by using the random walk representation
of ��L 1 m2�21�ii [6], one can show [5] that the Gaussian
free energy for the whole graph is simply the weighted
sum of the Gaussian free energies of the subgraphs.
Therefore one can treat the factors as independent. This
reduces the study of mixed graphs to the study of a finite
number of pure graphs. Therefore, in the following we
will restrict to the pure case.

Let us now come back to the equivalence between the
O�`� model and the spherical one. The proof of the classi-
cal result mentioned above deeply relies on the translation
invariance of lattices with simple elementary cells when-
ever the couplings Jij are constant over the lattice. It holds
in the thermodynamic limit and uses a saddle point tech-
nique [2] that cannot be generalized to a generic discrete
structure. Here, we will follow a more general and flexible
approach to the infinite component limit. In fact, it can be
proven that, provided 0 , e , Jij , JM , ` (bounded
ferromagnetic couplings) [7]:

2
1

2n
log��m2 1 JM�� # fn 2 fS�m2�

# K1
1
N

X
i

�f2
i 2 1�2 1

K2

n
(10)

where the constants K1 and K2 do not depend on m2, N ,
and n, fn is the free energy per component for the O�n�
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model defined by (2), fS�m2� is that defined in Eq. (7),
and the average in the right has Boltzmann weight e2bHS

,
with the Hamiltonian (5) with generic m2, i.e., where m2

is not yet fixed by the average spherical constraint (6).
Notice that inequality (10) contains as a particular case the
hypercubic lattice result. Indeed on a translation invariant
structure �f2

i � does not vary from site to site and the
spherical constraint (6), corresponding to m2 � m�b�,
allows the right hand side of (10) to vanish for n ! `,
implying the coincidence of the two free energies.

In the case of a generic discrete structure �f2
i � does

change from site to site and one would in general need
site-dependent squared masses m2

i to enforce �f2
i � � 1

for every i and obtain an analogous coincidence of the
two free energies in the infinite components limit. Thus
in the thermodynamic limit one would have to solve an
infinite number of equations which could not be reduced
to a single one due to the lack of translation invariance,
forbidding the equivalence with the spherical model where
only the average constraint (6) holds and is solved through
a single global parametrization m2 � m�b�.

The key point of our approach is that we are interested
in the critical properties of the two models. Therefore we
will require from the beginning only the coincidence of
the singular parts of the two free energies. This require-
ment has two main consequences: the constraint equations
are replaced by “constraint inequalities” and, above all,
the original models can be replaced by modified models
with the same singular parts of the free energies, there-
fore belonging to the same universality classes. Then we
will show that a particular global choice m2 � m�b� cor-
responding to the solution of the constraint equation for
a rescaled spherical model on G does satisfy the con-
straint inequalities and therefore gives the critical behavior
of corresponding rescaled O�n� model in the n ! ` limit.
Finally, the rescaled models will be shown to belong to the
same universality class of the original ones.

The first step of our proof consists of obtaining the con-
straint inequalities.

Let us consider the n ! ` limit of Eq. (10), which we
write as

fS�m2� # f` # fS�m2� 1 K1��f2 2 1�2�G , (11)

and suppose we could show that

��f2 2 1�2�G # o���m�b���� (12)

near the critical point of the spherical model. Then com-
paring with the asymptotic form (9) of fS���m�b���� itself
would immediately prove that the two free energies have
both the same value at the critical point and the same sin-
gular parts near it.

Now, for the class of infinite graphs under consideration
(pure graphs) [5], the inequality (12) follows from the
infinite set of linearized inequalities

j��f2 2 1�m�G0j # o���m�b���� , (13)
1498
where the average is taken over every subgraph G0 with
jG0j . 0. We shall call (13) the “constraint inequalities”
by analogy with the usual approach.

As a matter of fact, it is in general impossible that
inequalities (13) are verified by the solution m�b� of the
global constraint for the standard spherical model on G .
However, we prove the following: (i) It is possible to find
a modified set of couplings �J 0

ij� and site-dependent masses
�m02

i �, both functions of m2, which define two modi-
fied models on G with Hamiltonians H 0S and H 0

n such that
the corresponding constraint inequalities (13) are satisfied
by the solution of the (modified) spherical model on G ,
namely m2 � m�b�, with m�b� � O���m�b���� near criti-
cality. Therefore, from the inequality (11), the two
corresponding free energies f 0

`�b� and f 0S���m�b���� have
the same singular part. (ii) The rescalings �Jij� ! �J 0

ij�
and �m2

i � ! �m02
i � do not affect the singular parts of the

free energies for both the O�n� and the spherical models
and therefore such modified models belong to the same
universality classes as the original ones.

To prove the first point let us introduce the set of
couplings and masses,

J 0
ij � Jij

q
�ai 1 bi�m2�� �aj 1 bj�m2�� ,

m02
i � m2�ai 1 bi�m2�� ,

(14)

where 0 , e , ai , A , ` and the bi�m2� are functions
to be determined which vanish for m2 ! 0. Such a rescal-
ing can be seen as a bounded rescaling of the scalar spin
variables fi ! f

0
i � fi

p
�ai 1 bi�m2�� with the original

Hamiltonian (5). Therefore, the inequalities (13) for the
modified model H 0S can be written in terms of the f

0
i .

Now setting m2 � m�b� the constants ai and the functions
bi�m� can always be chosen self-consistently to satisfy the
inequalities to o���m�b����. This can be done at the same
time for every subgraph G0 with jG0j . 0, as required by
Eq. (13), because the leading singularity of ��f2��G0 , in-
cluding its coefficient, is universal, that is equal to that of
��f2��G .

Then for n ! ` the O�n� model with coupling J 0
ij and

the spherical model, defined by the same set of J 0
ij , satisfy

the constraint inequalities. Therefore, their free energies
have the same singular part and the two models have the
same critical properties.

Now, let us consider the universality classes of these
models. The critical behavior of the spherical model on a
graph can be expressed in term of its spectral dimension
d̄, defined by (8). This has been shown to be invariant un-
der bounded rescaling of couplings Jij [8] such as the ones
corresponding to the set J 0

ij . Therefore, the two spherical
models described by the Jij and J 0

ij belong to the same uni-
versality class. On the other hand, by the generalized Grif-
fith inequalities [9] the correlation functions of the O�n�
model corresponding H 0

n has the same critical behavior
of the correlation function of the model Hn. Then they



VOLUME 85, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 14 AUGUST 2000
belong to the same universality classes. This completes
our proof.

Our result on the equivalence of critical regimes for the
spherical and O�`� models on graphs provides a key step
for the comprehension of phase transitions on general net-
works. The spherical critical exponents, which are exactly
known and depend on the spectral dimension of the graph,
are the starting point for the determination of the corre-
sponding ones for O�n� models, via the 1�n expansion.
This expansion is a fundamental tool to analyze the exis-
tence of geometrical universality classes on graphs: indeed
if its coefficients can be shown to depend only on the spec-
tral dimension d̄, then their existence is proved.
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