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Hard spheres crystallize due to purely entropic forces. The underlying excluded-volume interaction is
completely anharmonic and the nature of the phonon spectrum is therefore of interest. To measure the
single-particle motion and the phonon spectrum by dynamic light scattering we have used a collection of
novel techniques including multispeckle cross correlation on a CCD chip and the growth of large single
crystals using a temperature gradient. The random hexagonal close packed crystal has a dispersion
relation closer to hcp than to fcc.

PACS numbers: 63.20.–e, 42.25.Fx, 82.70.Dd
In this Letter, we shall report the particle dynamics in a
colloidal hard sphere crystal using a novel dynamic light
scattering technique. A crystal distinguishes itself from a
liquid by possessing a finite shear modulus and a trans-
verse phonon spectrum. Although the crystallization of
hard spheres has been intensively studied in the past three
decades, investigations have focused on the phase diagram
[1,2] and crystallization kinetics [3,4]. Other properties
of hard sphere crystals have not been as thoroughly in-
vestigated partially due to the lack of large, well-oriented
crystal samples and partially due to problems of multiple
scattering and nonergodicity. The phonon spectrum for
conventional solids is well calculated from force constants
(a harmonic approximation) associated with the interpar-
ticle potential often evaluated at T � 0. Hard spheres in-
teract with a potential which is infinite at contact and zero
at any separation and has no analytic derivatives. The free
energy is entirely entropic (hence zero at T � 0) and long
wavelength modes are therefore accessible from thermody-
namics. Here we measure the complete phonon spectrum
including the short wavelengths at the Brillouin zone edge
and find similarity with conventional solids.

The largest hard sphere crystals reported so far are of
the order 100 mm on earth and 1 mm in microgravity us-
ing 0.5 mm spheres [2]. Recently we developed a tempera-
ture gradient technique to control the self-assembly of hard
sphere crystals [5] and were able to produce large and well-
oriented crystals. Hence so far lattice dynamics are studied
only with dilute charged sphere crystals by light scattering
[6–8]. On the other hand, for a concentrated system such
as a colloidal hard sphere crystal or glass, as well as emul-
sion, foams, biosystems, etc., the nonergodic character and
the extremely slow relaxations challenge the capabilities of
conventional dynamic light scattering measurements [9].
Recently, multispeckle autocorrelation spectroscopy tech-
niques were developed [10]. An area detector such as a
charge-coupled device (CCD) chip acts as an array of pho-
tomultipliers that measure the intensity I�q, t� for many
different q vectors simultaneously. The time average can
thus be replaced by an ensemble average of many correla-
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tion functions measured on different pixels with the same
q vector. The correlation function can be measured in real
time and the measurement need only last as long as the
time scale of interest. For a highly concentrated sample,
another challenge is to handle multiple scattering. A novel
technique for suppressing multiple scattering by spatial
cross correlation was developed recently with an array of
two optic fibers to detect the scattering light [11]. Multiple
scattering in the sample will illuminate a greater volume of
the sample than the incident beam. Since speckle size is
inversely related to the dimension of the illuminated vol-
ume, multiple scattering produces smaller speckles than
the single scattering from the direct incident beam. Scat-
tered light intensity from a sample is correlated only over
a speckle size. Therefore taking the cross correlation of
pixels within a single-scattering speckle but spaced far-
ther apart than a multiple scattering speckle eliminates the
multiple scattering. In our experiment, those two tech-
niques are combined. We used a GBC CCTV CCD camera.
The CCD chip has 640 3 480 pixels. Each pixel square
is 12 mm in size. A DT3155 PCI board grabs a series of
images. The cross correlation function of the scattering on
two pixels that are separated by 5 pixels was calculated
and an ensemble average was achieved by averaging over
a square of typically 100 3 100 pixels and 20 separate
runs. A dilute sample of strongly scattering polystyrene
particles in glycerol (to make the simple diffusion appear
nonergodic on the time scale of the experiment) was pre-
pared and measured. The excellent agreement with dif-
fusion constant and correlation function of the Brownian
particles served to test and validate our technique.

Figure 1 shows the principle of controlled crystal growth
of hard spheres by a temperature gradient. The coexis-
tence region of liquid-crystal transition under each uniform
temperature T1 or T2 (T1 . T2) is 0.494 , f , 0.545.
Application of a temperature gradient to an initially homo-
geneous fluid sample with volume fraction f just below
freezing generates a gradient in osmotic pressure that will
drive particles from the high temperature region to the low
temperature region, stimulating controlled nucleation and
© 2000 The American Physical Society
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FIG. 1. The effect of a temperature
gradient on a hard sphere suspension.
Shown are osmotic pressures calcu-
lated from Carnahan-Starling and Hall
(fmax � 0.74) equations of state for
T2 � 300 K and T1 � 320 K. V0 is
the volume of the sphere. At each uni-
form temperature, the fluid and crys-
tal coexistence regime is 0.494 , f ,
0.545, while under a temperature gra-
dient a high temperature liquid coex-
ists with a low temperature crystal as
indicated by the dotted line. The tem-
perature gradient can control the “su-
percooling” of the metastable fluid, the
site of nucleation, and the speed of
crystal growth. It is also in principle a
powerful tool to investigate the equilib-
rium hard sphere crystal structure. Up-
per inset: Equilibrium phase diagram.
Bottom inset: Experiment setup.
growth in the low temperature region. We used PMMA
particles in a density matching solvent, a decalin and
cycloheptyl bromide mixture. In the presence of gravity,
convective flow of the solvent established under the tem-
perature gradient will help the macroscopic transport of
the PMMA particles. Large hard sphere crystals, 3 mm in
size, were thus produced. Figure 2 shows one of the single
crystals. The picture was taken by a video camera under
conditions where the white light was Bragg reflected.
More quantitative Bragg scattering shows the structure of
this crystal to be random hexagonal close packing (rhcp)
with the close packed planes parallel to the surface of
the glass tubing. There were six symmetrically distributed

FIG. 2. Single colloidal hard sphere crystals grown by the tem-
perature gradient technique, captured by a video camera. The
crystals are about 3 mm in size and have a blocklike shape.
Bragg spots in the forward scattering direction and six
Bragg spots in the back scattering direction forming the
mirror image of the forward ones corresponding to the
hexagonal close packing plane. The nearest neighbor sepa-
ration in the close packed plane deduced from the Bragg
scattering is rnn-c.p.p. � 793 nm, for particles with an ini-
tial diameter of 700 nm (slightly swollen by the solvent,
2% in diameter). A good mass density matching between
the particle and the solvent reduces the effective gravity to
1023g, but a slight refractive index mismatch (nPMMA �
1.503, nsolvent � 1.498 at room temperature) remains. The
light scattering reported was set up with the incident beam
perpendicular to the close packed planes. The forward
scattering measurements were conducted from q � 0 to
one of the six Bragg spots.

Large q, large angle scattering is dominated by self-
diffusion. Figure 3(a) shows the results measured at 136±.
The mean square displacement is constant at long times
because the spheres are constrained to the lattice structure.
The mean square displacement of a single sphere can be
used to characterize the viscoelastic properties of colloidal
crystals as done for complex fluids and the gels [12]. Here
we just report the value of the Lindemann parameter and
estimate of the low frequency elastic modulus. The Linde-
mann parameter [13] measured is

L � jDr2
maxj

1�2�rnn � 0.08 6 0.01 .

Where rnn is the nearest neighbor separation in the crys-
tal and jDr2

maxj
1�2 is the maximum displacement of single

sphere. L values of �0.10 are expected for crystals near
the melting point. So the volume fraction of the single
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crystal under study was a little bit higher than melting vol-
ume fraction 0.545, consistent with the Bragg scattering
result.

By equating the thermal energy per sphere � 3
2kT � to the

elastic energy (
Dr2

max
�rnn�2�2

4pa3�3
f G0

0), we estimate the low fre-

quency elastic modulus [12] as G0
0 � 9f

32p

kT
a3L2 . So the mea-

surement gives G0
0 � 0.71 6 0.14 Pa or G0

0a3

kT � 7.3 6
1462
1.3. This dimensionless value is consistent with the result
of a molecular dynamics study on fcc crystals [14] and
measurements with charged silica spheres at the liquid-
crystal phase boundary (for particles with diameter 238 or
255 nm) [15].

For coherent scattering, the multiphonon expansion
of the normalized autocorrelation function g�1��q, t� �
F�q, t��F�q, 0� is [6],
g�1��q, t� � e22M

"
�2p�3V21

X
m

d3�q 2 Km�

#

1
X

Dq,n

�qanan
Dq �2�jQn

Dqj�2

"
�2p�3V21

X
m

d3�q 2 �Km 2 Dq�	rn
Dq�t�

#
1 . . . .
Where M is the Debye-Waller exponent, Dq is the wave
vector of the phonon, a the coordinate label, n polariza-
tion, nan

Dq the amplitude, V the volume of the direct-lattice
unit cell, and r

n
Dq�t� is the time autocorrelation function

of the normal mode Qn
Dq�t�. The essential features of the

scattering can be seen in the expansion. The first term is
the zero-phonon scattering (Bragg scattering) representing
elastic scattering that occurs only when q equals a recip-
rocal vector km. It is reduced in intensity by the Debye-

FIG. 3. (a) Single particle mean displacement measured at
scattering angle 136±. (b) Phonon dispersion curve. The curves
are the central force approximation calculations for fcc and rhcp
structures, as well as 2D close packing planes.
Waller factor. The second term is the one-phonon scatter-
ing, which is quasielastic. Only the phonons of the vector
Dq, where Dq is measured from the nearest reciprocal lat-
tice point, contribute to the scattering into wave vector q.
This allows detection of only one mode at a time in the
one phonon limit.

Unlike phonons in conventional solids, all but the very
low frequency, long wavelength shear modes (transverse
phonons) are strongly overdamped from the viscous drag
between particle and solvent in colloidal crystals. Thus the
correlation function decays exponentially,

r
n
Dq�t� � exp
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2
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Dq�2
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Dq

t

#
,

with v
n
Dq being the eigenvalues of the elastic matrix and

l
n
Dq the eigenvalues of the dissipation matrix [6].
The forward scattering has contributions from incoher-

ent scattering (particle self-diffusion) and one phonon scat-
tering. The former has been measured at large angles as
described above and is known to have a q2 dependence.
After the subtraction of the self-diffusion part from the
measured correlation function, a single-exponential decay
was observed for r

n
Dq�t� and the fit gave v2�l (Fig. 4).

Figure 3(b) shows the dispersion curves named by anal-
ogy to atomic systems in the first and second Brillouin
zone along the direction from the first Brillouin zone cen-
ter to one of the Bragg spots.

In the central force harmonic approximation, the longi-
tudinal phonon dispersion in the direction from the center
to one of the Bragg spots for hcp structure is

mv2 � 6k

µ
sin2u 1

2
9

sin2 2u

3
1

1
9

sin2 u

3

∂
,

where k is the spring constant of the interaction between
a pair of spheres, m the mass of the sphere, and u �
�Dq�qBragg� 3 p [16]. For fcc structure, the intended
longitudinal mode was mixed with a transverse mode (out
of the close packing plane). Figure 3(b) shows the dra-
matic difference between the measurement for rhcp and
the fcc calculation (with admixture between longitudinal
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FIG. 4. Extraction of the coherent scattering at the forward
scattering angle of 25±. The total correlation was measured by
intensities cross-correlation measurements (5-pixel separation)
averaging 640 3 160 pixels, accumulating over 15 runs. Af-
ter subtraction of the self-diffusion, calculated based from the
backscattering measurement, a single exponential was fitted to
obtain the decay time t and hence the phonon parameter v2�l.

and transverse modes). On the other hand, the calculation
of in-plane motion only (2D planes) obviously underesti-
mates the interaction from neighbor planes, as shown in
Fig. 3(b). rhcp data for the phonon modes near the Bragg
rods fall between hcp and fcc calculations but closer to the
former as one might expect from the closer structural simi-
larity between rhcp and hcp. The finite value of v2�l near
the zone center is due to the contribution from the trans-
verse phonons.

The high frequency shear modulus G0
` is related to the

spring constant as [17] G0
` � 0.83 3 �3�4p�1�3f1�2k�a.

The drag can be taken to be independent of Dq for longitu-
dinal phonons [6] and estimated [18] as l � 6phb�f�a

m �
6ph3553a

m with h � 2 3 1023 Pa S, and b�f� correcting
for hydrodynamic interaction in the lattice. Therefore, the
fit to the data gives G0

` � �1.0 6 0.2� Pa or G0
`a3�kBT �

10.4 6 1.5. Notice that G0
` � 1.43G0

0, which is consistent
with a few measurements available [19].

Thus we find, somewhat surprisingly, that the phonon
spectrum for these most anharmonic crystals is similar to
what we would find for harmonic crystals with the same re-
lationship between the zone boundary (highest frequency)
phonon and the long wavelength elastic modulus.

It is interesting to notice the maximum value of v2�l is
2 orders of magnitude smaller than that of charged sphere
crystals [6]. This is due to the fact that the shear modulus
is much smaller and the friction coefficient is larger for
hard sphere crystals, since the charged spheres crystallize
at much lower volume fractions and samples can be made
much “deeper” into the crystalline phase.

In summary, we have used a novel method, tempera-
ture gradient control and density matching, to make large
colloidal crystals (�3 mm) for 0.7 mm PMMA�PHSA
spheres. The structure of these single crystals is rhcp.
We then developed a new dynamic light scattering tech-
nique (multispeckle cross-correlation light scattering) to
investigate the single particle and lattice dynamics of hard
sphere crystals just on the solid side of melting. Despite
the presence of the strongly anharmonic hard sphere poten-
tial, these entropic crystals have short wavelength phonons
with a similar dispersion to conventional materials.

We acknowledge the financial support from NASA Mi-
crogravity Sciences Program and useful discussions with
Bill Meyer from NASA Glenn Research Center.

*Corresponding author.
Email address: zcheng@princeton.edu, zcheng@erenj.com
Electronic address: www.princeton.edu/~zcheng

[1] P. N. Pusey, in Liquids, Freezing and Glass Transition,
Proceedings of the Les Houches Summer School, Ses-
sion 51 (North-Holland, Amsterdam, 1991), Chap. 10; J. P.
Hansen, D. Levesque, and J. Zinn-Justin, Observation, Pre-
diction and Simulation of Phase Transition in Complex
Fluids, edited by W. C-K. Poon, P. N. Pusey, M. Baus, L. F.
Rull, and J. P. Ryckaert (Kluwer, Dordrecht, 1995), p. 3.

[2] J. Zhu et al., Nature (London) 387, 883 (1997); Z. Cheng,
P. M. Chaikin, and W. B. Russel, Mater. Des. (to be
published).

[3] B. J. Ackerson and K. Schätzel, Phys. Rev. E 52, 6448
(1995).

[4] Z. Cheng, Ph.D. thesis, Princeton University, 1998,
Chap. 5.

[5] Z. Cheng, P. M. Chaikin, and W. B. Russel, Nature (Lon-
don) 401, 893 (1999).

[6] A. J. Hurd et al., Phys. Rev. A 26, 2869 (1982).
[7] J. Derksen and W. van de Water, Phys. Rev. A, 45, 5660

(1992).
[8] M. Hoppenbrouwers and W. van der Water, Phys. Rev. Lett.

80, 3871 (1998).
[9] W. van Megen and S. M. Underwood, Phys. Rev. E 49,

4206 (1994); E. Bartsch, V. Fraanz, and H. Sillescu,
J. Non-Cryst. Solids 172, 88 (1994).

[10] S. Kersch et al., J. Chem. Phys. 104, 1758 (1996); A. Wong
and P. Wiltzius, Rev. Sci. Instrum. 64, 2547 (1993).

[11] W. V. Meyer et al., Appl. Opt. 36, 7551 (1997).
[12] T. G. Mason, Hu Gang, and D. A. Weitz, J. Opt. Soc. Am.

A 14, 139 (1997); T. G. Mason and D. A. Weitz, Phys. Rev.
Lett. 75, 2770 (1995).

[13] F. A. Lindemann, Phys. Z. 11, 609 (1910); J. Bongers and
H. Versmold, J. Chem. Phys. 104, 1519 (1986).

[14] D. Frenkel and A. Ladd, Phys. Rev. Lett. 59, 1169 (1987).
[15] M. K. Chow and C. F. Zukoski, J. Rheol. 39, 33 (1995).
[16] N. W. Ashcroft and N. D. Mermin, Solid State Physics

(Saunders College Publishing, Fort Worth, Texas, 1976),
Chap. 22.

[17] J. W. Goodwin, T. Gregory, and J. A. Stile, Adv. Colloid
Interface Sci. 17, 185 (1982).

[18] S. Kim and W. B. Russel, J. Fluid Mech. 154, 269 (1985).
[19] See Eng Phan et al., Phys. Rev. E 60, 1988 (1999).
1463


