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Shear Effects in Nonhomogeneous Turbulence
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Motivated by recent experimental and numerical results, a simple unifying picture of intermittency in
turbulent shear flows is suggested. Integral structure functions (ISF), taking into account explicitly the
shear intensity, are introduced on phenomenological grounds. ISF can exhibit a universal scaling behav-
ior, independent of the shear intensity. This picture is in satisfactory agreement with both experimental
and numerical data. Possible extension to convective turbulence and implication on closure conditions
for large-eddy simulation of nonhomogeneous flows are briefly discussed.

PACS numbers: 47.27.– i, 47.27.Ak, 47.27.Nz
Statistical properties of turbulent flows are usually char-
acterized in terms of the scaling behavior of velocity struc-
ture functions (SF). These quantities are defined as the
statistical moments of longitudinal velocity increments
across a separation r at the location x: Dp�x, r� �
�dy�x, r�p�. In homogeneous and isotropic turbulence,
Dp�x, r� depends only on the distance (or scale) r . Experi-
mental and numerical observations support the idea that
Dp�r� display universal power-law dependence on r in the
so-called inertial range, i.e., Dp�r� � rzp . Universality
refers here to the scaling exponents zp being independent
of the stirring process of turbulence. The zp values are
found to be in disagreement with Kolmogorov’s linear
prediction (K41) zp � p�3 [1]. The understanding of this
correction to K41, usually referred to as intermittency, has
stimulated many phenomenological and theoretical works
during the last 40 years (see [2] for a recent review).

Only recently, interests in understanding intermittency
in nonhomogeneous turbulent flows have started to emerge
(see [3–10]). The major point is to understand how the
phenomenology of intermittency is modified, or can be
extended, in case of nonhomogeneous flows. A common
characteristic of such flows, e.g., wall-bounded flows, is
the presence of a nonzero mean velocity gradient (usually
called shear). Note that shear does not necessarily imply
inhomogeneity, e.g., in homogeneous shear, straining, and
rotational flows.

Our investigation starts from the following key observa-
tions: (i) In the presence of a strong shear, intermittency,
defined as the deviation of scaling exponents zp from the
linear law, is larger than in homogeneous and isotropic tur-
bulence. (ii) Relative scaling exponents, measured in very
different flows but in positions where the shear is strong
enough, seem to be very similar (universal).

Data in Fig. 1 fully confirm our two key observations.
They come from very different situations: near the wall in
a channel flow numerical simulation [4,5] and experiment
[6], in the logarithmic sublayer of a boundary layer flow
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[7], near a strong vortex [8], in the wake of a cylinder [9],
and in a Kolmogorov flow [10].

In order to provide a theoretical unifying framework for
nonhomogeneous turbulent shear flows, we start from the
Navier-Stokes equations. The velocity field can be decom-
posed into a mean value (average is meant on time) plus
a fluctuating part: y�x; t� � y�x� 1 y0�x; t�. It yields the
usual Reynolds decomposition
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with Dt � �≠t 1 yj≠j�. The shear is defined as Sij�x� �
≠jyi�x� and will depend on the mean flow geometry. In
regions where Sij � 0, e.g., very far from the boundaries,
turbulence can be considered as homogeneous. Otherwise,
the shear term Sij�x�y0

j must be taken into account. The
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FIG. 1. Intermittency corrections to scaling exponents,
zp�z3 2 p�3, in homogeneous and isotropic turbulence (�),
and several turbulent shear flows (�). Intermittency corrections
are significantly larger in the presence of shear and display
universality.
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results displayed in Fig. 1 show that the presence of this
term modifies significantly the statistical properties of tur-
bulence. In order to better highlight the physical implica-
tion of the shear, we consider together the second and third
terms of the left-hand side of (1), defining the following
integral structure functions (ISF):

D̃p�z, r� � ��dy�z, r�3 1 ar ? S �z� ? dy�z, r�2�p�3� ,

(2)

where a is an empirical prefactor of order one. These ISF
are expected to take into account shear effects, particu-
larly at large scales (see next paragraph) and to display a
universal behavior. We consider here generic situations in
which the shear reduces to S �z� � ≠zyx . Such situations
occur near a rigid wall, where the principal mean-velocity
component aligns in the x direction, parallel to the bound-
ary [11]. The shear S �z� characterizes the variation of yx

along the z direction, i.e., as one moves off the wall. Fi-
nally, we consider increments in the direction of the mean
flow, i.e., orthogonal to the shear direction.

ISF reduce on two different SF when either the first
or the second term dominates. These two terms will ex-
actly balance at scale LS such that dy�LS ��LS � aS .
At scales r ø LS , shear effects become negligible and
homogeneous and isotropic scalings are expected. Kol-
mogorov’s scaling then yields dy�r� � e1�3r1�3, where e

denotes the mean energy dissipation rate. By extending
this similarity relation to the scale r � LS , one obtains
the usual dimensional estimate for the shear length scale
LS � �e�S 3�1�2 [12]. In the logarithmic layer of a plane
near-wall flow it yields LS �z� � z [7]. Roughly speaking,
LS can be viewed as the size of small-scale eddies, whose
turnover time equals the shear time scale 1�S , imposed by
the flow geometry and the stirring process of turbulence
at large scales. Note that this estimate of the shear length
scale stems out from dimensional analysis. In practice,
there may be a prefactor in the expression of Ls: this is
taken into account by the coefficient a. From previous
reasoning it follows that D̃p�r� � Dp�r� for r ø Ls and
D̃p�r� � �rS �p�3D2p�3�r� for r ¿ Ls.

Another way to see that the central objects, in the pres-
ence of shear, are the ISF comes from the generalization of
Yaglom’s equation to homogeneous-shear flows, i.e., with
S �z� � S [12,13]:
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Supposing that this relation can be generalized, along the
same line of idea of the Kolmogorov’s refined similarity
hypothesis [14], one obtains

dy3�r� 1 ar ? S ? y0
x�x�y0

z�x 1 r� � ´�r�r , (4)
where ´�r� denotes the coarse graining of the energy dis-
sipation field e �

n

2

P
i,j�≠iyj�2, at scale r .

Simplifying, on pure dimensional grounds, the velocity
cross correlation y0

xy0
z , with dy�r�2 one ends up again with

D̃p�r�. Furthermore, we propose the following refined
similarity hypothesis:

D̃p�r� � ��dy�r�3 1 ar ? S ? dy�r�2�p�3�

� �´�r�p�3�rp�3.

This formulation is consistent, in the limiting cases of
strong and negligible shear, with some recent findings (see
[4,5]). In addition to that, the ISF should be able to abridge
smoothly between these two limiting regimes, i.e.,

r ø LS : Dp�r� � �´�r�p�3�rp�3, (5)

and

r ¿ LS : Dp�r� � �´�r�p�2� . (6)

Equation (5) is in agreement with the restoration of homo-
geneity and isotropy at small scales. For r ¿ LS , Eq. (6)
gives D2�r� � const (modulo possible logarithmic correc-
tions), yielding for the energy spectrum E�k� � k21 (a
relation suggested a long time ago in [12]).

In the previous picture, it is assumed that the shear
length scale LS remains larger than the dissipation length
scale h. The dissipation field ´�r� is then expected to dis-
play the same scaling properties as in homogeneous and
isotropic turbulence. However, in regions where LS & h

(very close to the wall) it is expected that shear effects act
down to the dissipative scale and therefore can modify the
scaling behavior of ´�r�. The scalings of Dp�r� should
then also change according to [6].

The relevance of integral structure functions for describ-
ing the scaling properties of nonhomogeneous shear flows
is now tested on both experimental and numerical data.
The experiment, performed in the recirculating wind tun-
nel of ENS de Lyon, consists of a turbulent boundary-
layer flow over a smooth horizontal plate (see [7] for
details about the experimental apparatus). Velocity mea-
surements are carried out at various elevations from the
plate in the logarithmic turbulent sublayer [11]. Numerical
results are obtained from a direct simulation of the Navier-
Stokes equations in a rectangular channel flow (see [4] for
details).

In Fig. 2, D3 and D6, measured in the logarithmic
boundary sublayer, are compared with the correspond-
ing D̃3 and D̃6. The shear S �z� � ≠zyx has been
estimated from the mean-velocity profile. In standard
nondimensional variables [15], namely, z1 � y�z�n and
y1 � ȳx�y�, where y� is the characteristic velocity of
the viscous sublayer, our data are well fitted by the loga-
rithmic profile y1�z1� � �1�k� log�z1� 1 B. We obtain
k 	 0.4 and B 	 5.26 in agreement with previously
reported results [7]. For what concerns the coefficient a,
all our results have been obtained with the fixed value
1437
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FIG. 2. In the turbulent boundary layer at the distance z1 �
102. D3 and D6 (�) are compared with D̃3 and D̃6 (�). The
scale r has been renormalized by the characteristic shear length
scale Ls. The solid lines passing through D̃3 and D̃6 indicate the
expected homogeneous and isotropic power laws, respectively,
z3 � 1 and z6 � 1.78. For comparison, the dashed line has
slope 2.

a 
 0.2. Note that the constant a is not (a priori)
intended to be universal but may strongly depend on the
geometry and stirring process of the flow. However, it
is expected to remain of order unity. In practice, the
value of a has been extracted from data by requiring
that one third-order ISF scale as r (see next paragraph).
Corresponding estimates of Ls are indicated in all figures.
Finally, one must point out that velocity increments have
been estimated in the direction of the mean flow by use
of the Taylor hypothesis. Both D3 and D6 exhibit a
power-law dependence on r , but the scaling exponents
are clearly different from those observed in homogeneous
and isotropic (h-i) turbulence, respectively, z3 	 1 and
z6 	 1.78. On the other hand, the corresponding ISF
exhibit power laws in good agreement with h-i scalings
(up to very large scales).

In Fig. 3, third-order SF and ISF are displayed for vari-
ous distances from the wall. We notice that scaling be-
havior of D3 changes with z1. On the contrary, all the
corresponding D̃3 display the same power-law scaling with
exponent 1. We recall that the coefficient a is kept con-
stant and the shear is estimated from the mean-velocity
profile; there is no adjustable parameter.

We now report a sharper test: SF and ISF, compen-
sated by h-i power-law scalings, are displayed in Fig. 4
for p � 1, . . . , 6 at distance z1 � 102. A departure from
h-i scalings is clearly observed for SF.

On the contrary, D̃p�r��rzp exhibits a plateau up to very
large scales, indicating that ISF roughly behave as rzp .
In other terms, ISF compensate shear effects and restore,
via the extra term ar ? S ? dy�r�2, the h-i scalings. Fi-
nally, the same test, made on numerical data, is reported
in Fig. 5 for the sake of comparison. Data are obtained
1438
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FIG. 3. From the boundary layer experiment, third-order struc-
ture function at various distances from the wall: z1 � 37 (±),
z1 � 124 (�), and z1 � 233 (�). The scaling properties of
D3 (SF) do depend on the distance z1. On the contrary, D̃3
(ISF) displays the same scaling behavior for all z1. The dashed
line has slope 1. The curves have been shifted vertically for
convenience.

at distance z1 � 25 from the wall, i.e., where the shear
is strong. Results are in reasonable agreement with those
of Fig. 4, despite the lower resolution of the numerical
simulation. We emphasize the major points of our study.
Our description relates the scaling properties of velocity
fluctuations in nonhomogeneous shear flows to those of
the coarse-grained dissipation rate ´�r�. Provided that the
shear length scale remains much larger than the dissipa-
tive length scale, we are inclined to believe that the scaling
properties of ´�r� remain flow independent; the dissipation
process, operating on very small scales, is mainly insensi-
tive to the presence of the shear. We then claim that the
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FIG. 4. In the experimental boundary layer at z1 � 102. SF
and ISF, compensated by homogeneous and isotropic scalings,
are displayed for p � 1, . . . , 6.
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FIG. 5. As in Fig. 4 but from numerical data at z1 � 25.

scalings of velocity fluctuations are different in sheared re-
gions only because the similarity between dy�r� and ´�r�
changes form [see (5) and (6)]. When LS & h, shear
effects acting down to dissipative scales are expected to
modify the scaling behavior of ´�r�. Nonetheless, we ob-
serve in Fig. 1 that relative scalings exponents of velocity
structure functions remain universal.

The introduction of ISF relies on quite simple dimen-
sional arguments. However, they have proved to be valu-
able (preliminary) tools in order to capture (at leading
order) shear effects on the scaling behavior of velocity
structure functions. We believe that some refinements in
the definition of ISF may be possible, e.g., considering
the cross correlation y0

xy0
z instead of dy�r�2: however,

ISF are of practical interest as they are easily accessible
experimentally.

A possible extension of ISF applies to thermal turbulent
convection, the buoyancy term agdT�r� playing a similar
role of S ? dy�r�. In that case, the ISF would read

D̃RB
p �r� � ��dy�r�3 1 ar agdT�r�dy�r��p�3�

and are expected to take into account buoyancy effects at
scales larger than the Bolgiano length scale.

An important application of our findings concerns large
eddy simulations (LES). Usual eddy viscosity models are
known to fail close to the boundary. As one moves near
the boundary, the shear length scale LS becomes smaller
and smaller. While LS remains larger than the cutoff scale
D of the LES, usual closure conditions, based on homoge-
neous and isotropic turbulent dynamics, remain acceptable.
However, when LS becomes comparable or smaller than
D, shear effects must be taken into account and the closure
condition should be modified. An alternative consists of
decreasing the mesh size near the wall so that LS always
remains larger than D. More simply, our study suggests
considering �dy�r�3 1 arSdy�r�2�1�3 instead of dy�r�
in closure relations. Along this line of idea, the Smagorin-
ski’s closure condition [16] can be generalized in order to
uniformly take into account shear effects. The eddy vis-
cosity neddy then reads

neddy � CsD
2� S 1 aS � ,

where the extra term aS takes care of shear effects. Cs is
the empirical constant of the Smagorinski’s closure and S
denotes the rate of strain on scale D.
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