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Particle Dynamics in Sheared Granular Matter
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The particle dynamics and shear forces of granular matter in a Couette geometry are determined
experimentally. The normalized tangential velocity V �y� declines strongly with distance y from the
moving wall, independent of the shear rate and of the shear dynamics. Local rms velocity fluctuations
dV�y� scale with the local velocity gradient to the power 0.4 6 0.05. These results agree with a locally
Newtonian, continuum model, where the granular medium is assumed to behave as a liquid with a local
temperature �dV�y��2 and density dependent viscosity.

PACS numbers: 45.70.Mg, 47.50.+d, 83.70.Fn
An important property of granular matter is partial
fluidization in response to shear stresses [1]. Stationary
granular matter can sustain normal loads and shear
stresses, but if a threshold shear stress is exceeded, part of
the material starts to flow with properties that appear to
differ from those of a Newtonian fluid. Unlike ordinary
fluids, granular materials do not exhibit intrinsic thermal
motion. Instead, the granular “temperature,” generally
defined as the square of rms velocity fluctuations dV 2, is
created by the flow itself. As a result, the mean flow and
rms fluctuations are related. This fundamental connection
has been investigated experimentally [2] but remains
poorly understood.

The forces generated in sheared granular matter were
first investigated in the pioneering work of Bagnold [3] by
confining the material in a Couette cell between a station-
ary outer cylinder and a rotating inner cylinder. Several
recent experiments and simulations investigated individual
particle motion in the same geometry [4–6]. These stud-
ies indicate that the mean particle velocity parallel to the
shear direction V �y� decreases faster than linearly away
from the inner cylinder.

The velocity profile in three dimensions was determined
by Mueth et al. [6]. Measurements were carried out both
in the interior of the material using x-ray and NMR tech-
niques, and on the bottom surface of the Couette cell by
optical imaging. These measurements showed that the
velocity profile on the bottom surface and in the interior
are the same. V �y� varies from nearly Gaussian for kid-
ney shaped particles to roughly exponential for spherical
particles. Layering of particles is suggested as the cause
of this variation.

In previous studies in a planar geometry [7], we have
found that most of the flow is confined to five to six layers
of particles close to the shear plane. The mean particle
velocities during brief slips of the shearing plate decrease
roughly exponentially with distance away from the moving
plate, consistent with the findings in the Couette geometry.

The aim of the present experiment is to understand the
relationship among mean velocities, rms fluctuations, and
8 0031-9007�00�85(7)�1428(4)$15.00
shear forces of a steady state shear flow. We have de-
veloped a locally Newtonian, continuum model that de-
scribes the granular medium as a liquid with nonuniform
temperature and density dependent viscosity. The inter-
play between mean flow and rms velocity fluctuations
can be understood quantitatively in this context, as we
demonstrate.

In the experiments we shear the granular material in a
Couette geometry. We measure both the mean particle
velocities V �y� and the velocity fluctuations dV�y� on
the upper surface of the granular material. These should
approximate particle motion in the interior based on the
previous 3D measurements described above [6].

In the experimental apparatus the granular material
(0.75 mm diameter black glass beads) is confined to a
12 mm gap between a stationary outer cylinder and a
rotating inner cylinder (r � 51 mm), as shown in Fig. 1.
The inner cylinder is hollow to reduce its inertia and is
coated with a monolayer of randomly packed glass beads.
The outer cylinder is made of glass and is coated with
a monolayer of randomly packed glass beads up to the
height of the top surface, which allows observation of the
top layer of grains through a mirror as shown in Fig. 1. To
shear the material, the inner cylinder is rotated at a vari-
able rate of 0.001–1 Hz. The lower 38 mm of the inner
cylinder is stationary in order to minimize boundary layer
effects.

The inner cylinder is connected to a microstepping mo-
tor via a flexible tempered steel spring. The spring bending
is proportional to the applied shear force. We measure the
spring displacement with a capacitive displacement sensor
that is rigidly connected to the motor shaft. This spring
configuration allows us to measure instantaneous shear
forces with excellent dynamic range and precision and per-
mits both stick-slip dynamics and continuous motion of the
inner cylinder, depending on parameters. The trajectories
of roughly 100 individual particles in the surface layer are
determined with a fast charge coupled device (CCD) cam-
era at 30–1000 frames�sec. Particle motion is extracted
from sequences of 2000 images with a spatial resolution
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FIG. 1. Experimental setup: The granular material (between
two concentric cylinders) is fluidized by an upward air flow and
sheared by rotation of the inner cylinder, which is connected
to the motor through a flexible spring (S). Shear forces are
determined from the spring displacement. Particle motions in
the top layer are measured through the glass outer cylinder with
a fast CCD camera.

of ,0.1 pixels. From the particle tracks we determine
average particle velocities V �y� and rms velocity fluctua-
tions dV�y� as a function of distance y from the rotating
inner cylinder.

The shear dynamics are found to be very similar to the
dynamics of a plate sliding across a granular layer [8]. At
low shear rates the motion of the inner cylinder is intermit-
tent with short, rapid slips, and long periods of sticking. At
sufficiently high shear rates (or with a stiff spring), steady
motion of the inner cylinder is observed.

We can also apply an upward air flow at a variable rate
through the granular material. Air flow reduces the shear
forces, as already noted by Tardos et al. [9], and it also
suppresses stick-slip motion. Without air flow, stick-slip
motion is observed with a mean shear force of 95 N�m2.
At a mean air flow speed of �1.6 m�s through the granu-
lar material, shear forces are reduced by a factor of 4 and
steady sliding motion is observed. To measure V �y� and
dV�y� in the steady sliding regime, most experiments de-
scribed below were carried out at large air flow just below
the threshold of the “bubbling” instability. (The air flow
does not produce velocity fluctuations in the absence of
shear.) We have also suppressed the stick-slip motion us-
ing a rigid drive connection without air flow. Both V �y�
and dV�y� remain unchanged [10].

Measurements of shear forces, analyzed in the context
of our hydrodynamic model, will be presented elsewhere
[10]. Here we note that the mean shear stress does not
change with shear rate over more than 2 orders of magni-
tude in the shear rate. This behavior may be contrasted to
the quadratic increase of shear stress with the shear rate
observed in Ref. [3], where the material was immersed in
a fluid and kept at constant volume.

The average velocity of particles at the surface of the
shear cell is shown in Fig. 2 as a function of distance y
from the rotating inner cylinder, for inner wall velocities
U ranging from 0.004 to 0.4 Hz. As found previously,
the velocity profile decays strongly to zero over a few
particle diameters d. The normalized velocity profile is
independent of the imposed shear rate over at least 2 orders
of magnitude in shear rate. We also find that without air
flow (at U � 0.01 Hz, solid triangles), the inner cylinder
moves with stick-slip dynamics rather than steady sliding,
but the velocity profile remains unchanged.

Figure 3 shows the rms velocity fluctuations, which have
not been previously measured in a 3D system. The fluc-
tuations are slightly larger in the direction parallel to the
mean flow than perpendicular to it. Since parallel fluctua-
tions would also include the effect of fluctuations in the
mean flow, we show only the perpendicular fluctuations.
The velocity fluctuations decrease roughly exponentially
far from the inner cylinder. However, the fluctuations de-
crease more slowly with y than does the average velocity.

The rms fluctuation is the key quantity in a flowing
granular material. As already proposed by Reynolds [11],
the system has to dilate in order to allow flow, which im-
plies particle motion transverse to the flow direction. This

FIG. 2. Mean particle velocity (normalized by the shear
rate) as a function of distance from the inner cylinder (in
particle diameters). The respective shear rates U (in Hz)
are 0.004 (hexagons), 0.04 (squares), 0.01 (open triangles),
0.4 (crosses). The solid triangle is the velocity profile at
U � 0.01 Hz without air flow. The normalized velocity profile
is independent of shear rate and shear dynamics (intermittent
or steady motion). The dashed line is the solution of Eqs. (2)
and (3), with d � 4.7d, yw � 2.8d, and a � 0.4 ( see text for
details).
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FIG. 3. rms velocity fluctuations perpendicular to the shear
direction. Fluctuations decrease roughly exponentially far from
the inner cylinder, but more slowly than the mean flow. The
rms fluctuations are rescaled (shifted vertically) such that all
experimental points fit on the same master curve. The dashed
line is the theoretical result (see text), with a decay length d �
4.7d and a boundary position yw � 2.8d.

transverse motion vanishes on average and, therefore, its
rms fluctuations contain the physically relevant informa-
tion characterizing the flow properties.

In a phenomenological description, it is tempting to
consider these rms velocity fluctuations as an effective
granular temperature and consider a local hydrodynamic
model as a starting point, as has already been proposed in
the literature (see, e.g., [12]). Within such a picture the
granular temperature obeys a transport equation character-
izing the balance between “heat flow” and dissipation due
to the inelastic collisions:

≠yl≠yT 2 eT � 0 . (1)

(Note that a local heating term has been omitted, which
can be shown to be valid far from the moving boundary.)

This local equation introduces two transport coeffi-
cients, the thermal conductivity l and the energy loss
rate e. Both l and e are proportional to the collision
frequency. In the high density limit we consider, r � rc

with rc the density at random close packing, l and e are
proportional to P�T1�2, where P is the isotropic pressure
[12]. Stress conservation in the y direction implies that P
is constant over the cell. From Eq. (1), one can obtain the
temperature profile as

T1�2�y� � T
1�2
0

cosh��H 2 y��d�
cosh�H�d�

, (2)

where d, defined as d2 � 2l�e, is proportional to the bead
diameter d, and is independent of position and tempera-
ture. A vanishing heat flux has been assumed at the outer
stationary boundary in agreement with additional experi-
mental measurements for wider shear regions, while the
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temperature at the moving boundary, T0, is introduced as a
boundary condition at the wall. T0 is created by the flow in
the first layers close to the wall, so that Eq. (1) is assumed
to apply only for distance y larger than a cutoff distance
yw from the wall: yw quantifies the width of the bound-
ary layer in which temperature is created by the motion
of the inner cylinder. The fit to experimental data yields
yw � 2.8d. The effective cell width H is thus H0 2 yw ,
where H0 is the wall to wall distance. As shown in Fig. 3,
this hydrodynamic model shows good agreement with the
experimental data.

Within the framework of this phenomenological model,
the velocity profile can be constructed from the constant
shear-rate condition, sxy � h �g � const independent of
y, with �g � dVx�y��dy the local shear rate and h the vis-
cosity. The viscosity is expected to scale with the col-
lision frequency, h � h0P��rcd2T1�2� (where d is the
bead diameter, h0 is a dimensionless number, and r � rc

has been assumed), so that the local shear rate obeys
T1�2 � h0P��rcd2sxy� �g. This local relationship can be
compared to the experimental data by plotting the local
rms velocity as a function of the local velocity gradient �g.
As shown in Fig. 4, a remarkable scaling relationship is
found between these two local quantities,

dVrms � T1�2 � �ga (3)

with an exponent a � 0.4. This scaling behavior is not
in agreement with the simple scaling of the viscosity with
the collision frequency only, for which an exponent of 1
would have been measured.

The actual scaling can be understood if we assume that
the dimensionless coefficient h0 contains an additional
contribution that diverges algebraically, when the density
reaches random close packing, rc, i.e., h0 � h̃0�1 2

r�rc�2b . The density can be related to the granular

FIG. 4. Connection between the local rms velocity fluctuations
and local shear rate (same symbols as for Fig. 2). Local fluc-
tuations are found to increase approximately as a power law of
the local velocity gradient, with a power of 0.4 (dashed line).
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temperature through the constant isotropic pressure P,
which can be formally written as P � rf�r�T . The
dimensionless function f�r� is expected to diverge like
�1 2 r�rc�21 at random close packing [12], so that at
constant pressure P, in a region where r � rc, one has
rc 2 r � T . Note that this relation is consistent with
Reynolds’ remark that the density has to decrease in order
to allow flow, which occurs for nonzero granular tempera-
ture. Together with the constant shear rate condition, these
relations imply a nonlinear algebraic scaling of dV�y�
with the shear rate, with an exponent a � �2b 1 1�21.
With the experimentally determined exponent a � 0.4,
we obtain the overall divergence of the viscosity with
density as h � �rc 2 r�21.75.

Using the previously obtained temperature profile,
Eq. (3) can be integrated (with no-slip boundary con-
ditions at both walls) to give the velocity profile. The
corresponding result is plotted in Fig. 2 as a dashed line,
indicating good agreement with the experimental profile.

Finally, we measure granular flow when the gap between
the two cylinders is only 5 particle diameters wide.

In this case, the inner cylinder jams and can be moved
only at high air flow rates and high rotation rates. For the
narrow gap we find that V �y� decreases linearly with y
and that dV�y� is uniform across the gap at shear rates of
0.1 and 0.02 rev�sec. This result is consistent with our
model: A linear velocity profile is expected for a constant
granular temperature. A constant granular temperature in
turn is expected for cell widths smaller than the previously
defined decay length d.

The success of the present local Newtonian hydrody-
namic model in describing the experimental data (even
for small driving velocities) calls for a deeper understand-
ing. The basic ingredient of the present model is the
algebraically diverging viscosity close to random close
packing. In a granular material, the ability to flow relies
mainly on a decrease in the local density. Such a decrease
can be caused by the onset of rms velocity fluctuations.
Lowering the density allows some particles to move, cre-
ating “fluidized regions,” while other regions remain in
clusters at rest. The flow properties can be thus formulated
in terms of the local fluidization probability, or cluster life-
time. In a granular material, these quantities might be esti-
mated by means of a free volume estimate, along the lines
proposed by Edwards and Grinev [13] for granular matter
and earlier by Cohen and Turnbull [14] in the context of
transport in glassy systems. These models predict a very
strong divergence of the viscosity close to random close
packing, in qualitative agreement with the present results.
More precisely, our data are consistent with an algebraic
divergence, which is also expected in supercooled liquids
when the density approaches the critical density [15].

The model quantitatively describes all major aspects of
the experimental results: (i) The rms velocity fluctua-
tions increase with the local shear rate to a given power.
(ii) The velocity decreases strongly away from the moving
wall. (iii) The normalized velocity profile is independent
of shear rate and shear dynamics. A detailed comparison
between our experimental results and our model, including
a description of the influence of air flow and shear rate on
shear forces and T0, will be published elsewhere [10].

More generally, our experimental results indicate that
there may be a useful analogy between the dynamics of
granular materials and the behavior of supercooled liquids
close to the glass transition. Such an analogy was pro-
posed in a recent paper by Liu and Nagel [16]. Our re-
sults support this conjecture and indicate the quantitative
relationship: The flow properties reported here are quan-
titatively predicted from a locally Newtonian, continuum
model, provided that the local temperature is identified
with �dV�2 and that the viscosity is assumed to diverge as
the density approaches a critical value. The specific prop-
erties of individual particles enter only through the few
adjustable parameters of the model. Once determined in a
specific geometry, the flow properties in any geometry can
be predicted. Further experiments are under way to verify
this predictive power of the model.
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