
VOLUME 85, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 14 AUGUST 2000
Bose-Einstein Partition Statistics in Superradiant Spontaneous Emission
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We report the realization of the spatial counterpart of the Dicke superradiance. The new process is
revealed by the realization of the spatial quantum partition statistics within the detection of photons
emitted in sub-Poissonian regime by an active microcavity excited by ultrashort pulses. The superradiant
enhancement of the time decay of the dipole excitation has also been investigated.

PACS numbers: 42.50.Dv, 32.50.+d, 42.50.Vk
Radiation from a source composed of two atoms may
exhibit very interesting features. If the two atoms are
situated in free space at a mutual distance R # l, the rate
of spontaneous emission (SE) at the wavelength (wl) l

can be as high as the double of the corresponding rate
of a single atom. This is the most relevant aspect of the
“superradiance” time QED process [1,2]. The present Let-
ter reports on a new approach to superradiance by adop-
tion of a new technique, i.e., by trapping the atoms within
a biplanar high-finesse microcavity, a device that has
recently been found to behave as a source of nonclassical
radiation [3]. Here this method leads to the demonstra-
tion of the spatial counterpart of the superradiance process
by the discovery of an unexpected quantum statistical
distribution of the photons emitted by the microcavity
as a whole, over the two allowed external modes k and

k0. By this process the active microcavity, in spite of
being a macroscopic device, reveals its genuine nature of
quantum nanostructure ascribable to its peculiar particle-
confining topology more than to the intrinsic quantum
nature of the confined particles themselves. To our
knowledge, a spatial collective phenomenon of this kind
has not been investigated before, either theoretically or
experimentally.

Two independent femtosecond pulses with wavelength
lp � 615 nm and duration dt � 80 fs were focused
by a common lens within two transverse focal spots with
diameter w � 10 mm on the symmetry plane Z � 0 of
a planar active microcavity with relevant dimension
d �

1
2 l to excite two dipoles located at an externally ad-

justable mutual transverse distance R along the spatial
Y axis (cf. Fig. 1). The wl of the SE radiation was
l � 700 nm with an emission bandwidth Dl � 0.2 nm,
due to the spectral cavity filtering. The microcavity
was terminated by two equal mirrors with reflectivity
R � jrj2 � 0.9990 at wl l and the cavity “finesse,”
f � 3000, determined the “coherence time” of the
emitted particles, tc � 1 ps. The active medium filling
the cavity consisted of a 1025M�liter concentration of
Oxazine 725 molecules in a polymethyl methacrylate solid
film, cooled at liquid nitrogen temperature. An important
dynamical feature of the active microcavity consists
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of the establishment of an interdipole coupling over a
macroscopic “transverse coherence length” �c � 2l

p
fm

which corresponds to the effective radius of the Gaussian-
like electromagnetic emission mode in the cavity [4,5].
In a recent experiment we found that the dynamics of
two excited dipoles placed at a distance R � jRj # �c

is indeed causally connected within a retardation time
t & �c�c [6]. In the present work the regime of super-
radiant photon emission has been investigated by adopting
two different experimental interferometric configurations:
Fig. 1. Namely, configuration A (CA) in which the

FIG. 1. Optical configurations A and B of the Hanbury-Brown-
Twiss interferometers. Inset: Exploded view of the active
microcavity.
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measurement apparatus consisted of the detectors D1 and
D2 coupled via an external 50�50 beam splitter to only
one output mode k of the microcavity, and configuration
B (CB) in which the apparatus consisted of D1 and D3
coupled to both output modes k and k0. When a single
active spot was excited in the cavity, the single photon
condition was tested carefully by appropriate Hanbury-
Brown-Twiss tests carried out by either CA or CB. The
tests showed a striking evidence of the nonclassical
antibunching process within the emission process [3,7].
As an example, by adopting CA we found a value of the
degree of second-order coherence g�2� � 4.4 3 1022 on
the basis of the following results: number of detected
D1-D2 coincidences � 3, detected “singles” � 3810 and
3250, and statistical sample � 1.8 3 105 laser excitations.
There the photons were detected within time windows of
5 ns following each excitation. The detectors consisted
of single photon-counting modules EGG-SPCM200 with
quantum efficiencies �65%.

Moving to the main experiment involving couples of
photons, the time measurements were carried out by a
time-to-amplitude converter (TAC) with the detectors D1
and D2 (or D3) acting as start/stop devices, and by a multi-
channel analyzer (MCA). Because of the random orienta-
tion of the active molecules, the output radiation was found
slightly (20%) polarized along the linear polarization of the
excitation beams [8]. The emission properties of the active
dipoles along the orthogonal directions X and Y were in-
vestigated by filtering the output radiation with adjustable
polarization analyzers Pj . The polarization of the excita-
tion pulses was set oriented along X. Both CA and CB were
adopted: by CA we investigated the photon emission over
the single output mode k, while by CB we investigated the
emission over both modes k and k0. The first experiment,
carried out by CA, consisted of the measurement of the
temporal evolution of the normalized second-order field
correlation function: F�t� ~ �Ê2�t�Ê2�t 1 t�Ê1�t 1

t�Ê1�t�� being t the time delay between two photode-
tections. Precisely, we measured the normalized quan-
tity F�t� � limT!` g�2��t� 3 	T21

RT
0 g�2��t� dt
21. As

we shall see later, by assuming the exponential decay for
the SE probability, F�t� may be interpreted as the nor-
malized time probability distribution of detecting nk � 2
photons emitted over the output mode k and nk0 � 0 pho-
tons over the mode k0. Because of the normalization
of F�t� we may write F�0� � A 3 P�2, 0�, where this
last quantity is the probability of simultaneous emission
of two photons over the output mode k and zero pho-
tons over k0. A is a proportionality coefficient. A simi-
lar argument can be applied when F�t� is determined by
CB. In this case we get F�0� � A 3 P�1, 1�. The inset of
Fig. 2 shows two normalized MCA curves obtained for two
values of the interdipole spacing, R � 0.33�c � 25 mm
and R � 7.2�c � 570 mm, being �c � 77 mm. In Fig. 2
we have reproduced the same results in a semilog scale for
small values of t, by adding a further set of data taken
with R � 2.9�c � 230 mm. These results were obtained
with both polarizers Pj oriented along the X axis. The ex-
perimental results show an enhancement h � 1.8, of the
SE rate for two interacting dipoles placed at a mutual dis-
tance R & �c. When P1 and P2 were set mutually or-
thogonal, the enhancement effect disappeared and the SE
rate coincided with that of a single cavity-confined dipole
[9]. When both analyzers Pj were oriented along the Y
axis, corresponding to the less efficient head-on dipole-
dipole interaction, the SE enhancement effect was reduced
to h � 1.2.

In order to get a better insight into the process, let
us study the time evolution of the field radiated by two
dipoles, parallel to the X axis, excited at the time t0 � 0
and observed at a later time t by a detector located on the
Z axis at a distance Z ¿ l from the center of a lossless
microcavity. In the Heisenberg representation, the field
can be expressed in terms of the dipole transition opera-
tors p̂A�t� and p̂B�t� [7,9]:

Ê1�Z, t� � 2Q�1 1 r� �1 2 jrj2�1�2

3

∑
p̂A

µ
t 2

Z
c

∂
1 p̂B

µ
t 2

Z
c

∂∏ X̀
n�0

r2n.

(1)

Here the effect of multiple intracavity reflections is
considered, t is the reflection coefficient of the mirrors at
normal incidence, and Q is a constant. We may insert the
above expression into the definition for F�t� and make use
of the ansatz p̂�t� � p̂�0� exp�2	i 2pc

l 1
1
2 G�R�
t�, im-

plying that no causal interdipole interaction is estab-
lished at t0 � 0 [5]. By accounting for the antibunching
character of the output radiation, the second-order corre-
lation function may be written as
F�t� ~
X

ifij	�p̂y
i �t�p̂y

j �t 1 t�p̂j�t 1 t�p̂i�t�� 1 �p̂y
i �t�p̂y

j �t 1 t�p̂i�t 1 t�p̂j�t��
 ,
for i, j � A, B. By replacing in the sums the en-
semble averages with time averages, we find F�t� ~

exp	2G�R�jtj
. The following explicit expression of
G�R�, for the case of two dipoles oriented along X
and expressed as a function of the free-space SE rate
G � �T21

SE �, is found [5]:
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, (2)
where Rn �
p

R2 1 �nd�2 and u�ct 2 x� are Heaviside
unit step functions accounting for relativistic causality in
the interdipole interactions. It is found that for maximum
superradiance �kR � 0� the value of G�R� is twice as large
as the value G` of the case of two independent dipoles
�R ¿ �c�. The dashed lines shown in Fig. 2 are drawn in
the semilog scale according to Eq. (2). The experimental
results are in agreement with theory.

The above results show that the peculiar topology of the
microcavity is instrumental in the determination of the time
behavior of a SE decay process within an interdipole inter-
action. Indeed, the mesoscopic character of the microcav-
ity is ascribable to the fact that the de Broglie wavelength
l of the confined particle, the photon, is of the order of
the relevant dimension d of the confining device. This is a
common feature of all nanostructures that exhibit quantum
properties. In this perspective we thought that the spatial
behavior of some relevant dynamical process should also
be affected by the peculiar particle-confining properties of
the device. In the new experiment, we investigated the spa-
tial statistical distribution of the photon pairs emitted over
the two output modes k and k0.

FIG. 2. Semilog plot of the two photon normalized correlation
function F�t��F�0� as a function of the delay t between the de-
tected photons for R��c � 0.33 �D�, 2.9 �±�, and 7.2 ���. Inset:
Experimental normalized distributions F�t� for R��c � 0.33
(solid curve) and R��c � 7.2 (dotted curve).
1422
The experiment was carried out by adopting both CA
and CB and by measuring the probabilities P�2, 0� and
P�1, 1� of the simultaneous photodetections realized by
the couples D1 2 D2 and D1 2 D3, respectively. By
assuming a “classical,” Maxwell Boltzmann, partition
statistics we should expect that the probability of single
photon detection on both modes is twice as large as
the one of two photon detection on the same mode
by a single detector: P�1, 1� � 2P�2, 0�. The experi-
mental results given in Fig. 33 show that this is indeed
verified for R ¿ �c. However, by carrying out the
experiment with R & �c, the relative values of the prob-
abilities are found to converge toward the common value
P�1, 1� � P�2, 0�. We shall see shortly that this implies
that the quantum Bose-Einstein (BE) partition process
determines the overall photoemission from the microcav-
ity, a device that then behaves like a two photon “quantum
lamp.”

We may explain this remarkable spatial quantum phe-
nomenon as follows. The two equally polarized photons
are emitted over a single internal standing-wave (sw)
k mode of the microcavity if the condition R ø �c is
satisfied. It consists of the linear superposition of the two
traveling wave (tw) modes associated with the internal
momenta p � h̄k, p0 � h̄k0 � 2p. The field operators
acting on these tw modes are identified by the labels �

FIG. 3. Two photon partition probabilities P�1, 1� and P�2, 0�
vs R��c. The values of the probabilities are referred to the total
number of detection events actually registered in the experiment.
By reporting the data obtained by configuration A we have ac-
counted for the effect of the beam splitter.
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or r , respectively. The density operator representing the
state of the field in the condition R ø �c is then given by
r1 � p22

RR
dw dw0 cos2w cos2w0 3 �ây

� 1 eiwây
r � 3

�ây
� 1 eiwây

r � jvac� �vacj �â� 1 e2iw0

âr � �â� 1 e2iwâr �.
There the vacuum field is jvac� � j0, 0� � j� � 0, r �
0�, the phases w � pZ�d, w0 � pZ0�d account for the
random position of the emitting dipoles along the lon-
gitudinal coordinate Z, and the distribution function
p21 cos2 w expresses the SE enhancement in the plane
microcavity with d �

l

2 as a function of Z [9]. After
integration, and normalization is found, r1 �

1
3 �j2, 0� 3

�2, 0j 1 j1, 1� �1, 1j 1 j0, 2� �0, 2j�, where, e.g., j2, 0� �
j� � 2, r � 0�. For a larger transverse distance between
the emitting dipoles, R ¿ �c, the emission takes place
over two distinct, cavity sw modes, i.e., over two couples
of tw modes �, �0 and r , r 0. The system is now rep-
resented by r2 � p22

RR
dw dw0 cos2w cos2w0�ây

� 1

eiwây
r � �â0y

� 1 eiw0

â0y
r � jvac� �vacj �â0

� 1 e2iw0

â0
r � �â� 1

e2iwâr � where â�, â0
�, âr , â0

r are acting over the
corresponding modes �, �0, r , r 0, and the vacuum
field is jvac� � j0, 0; 0, 0� � j� � 0, �0 � 0; r � 0, r 0 �
0�. In this case is found r2 � 1

4 �j1, 1; 0, 0� �1, 1; 0, 0j 1

j1, 0; 0, 1� �1, 0; 0, 1j 1 j0, 1; 1, 0� �0, 1; 1, 0j 1 j0, 0; 1, 1� 3

�0, 0; 1, 1j�. This analysis leads immediately to the
predictions of the experiment. If the single cavity sw-
mode condition is realized, R ø �c, we obtain P�2, 0� �
�2, 0jr1j2, 0� � 1

3 , P�0, 2� � �0, 2jr1j0, 2� � 1
3 , P�1, 1� �

�1, 1jr1j1, 1� �
1
3 . This nonclassical result reproduces

the BE statistics according to which the probability of
distributing N indistinguishable particles among G
“boxes” is independent of the set of occupancies of the
boxes, here indicated by �ni�, and is given by P�ni� �
	�G 2 1�! N!��G 1 N 2 1�!
 [10]. On the other hand,
if the distance between the dipoles is large, R ¿ �c,
the two photons are emitted over two distinct cavity
sw modes and as such they become distinguish-
able. In this case the following probabilities are
found: P�2, 0� � �1, 1; 0, 0jr2j1, 1; 0, 0� �

1
4 , P�0, 2� �

�0, 0; 1, 1jr2j0, 0; 1, 1� �
1
4 , P�1, 1� � �0, 1; 1, 0jr2 3

j0, 1; 1, 0� 1 �1, 0; 0, 1jr2j1, 0; 0, 1� � 1
2 . As expected,

this result is in agreement with the classical Maxwell-
Boltzmann statistics: P�ni� � G2NN!��nl! nr !�, where
the boxes, labeled by i � l, r express detection on either
side of the cavity, as said. Note that the two statistical
formulas just given reproduce exactly the results of the
experiment for G � 2, N � nl 1 nr � 2.

In summary, we have found that, for R��c ø 1, the
photons tend to be emitted both at the same time and over
the same spatial mode of the active cavity. This represents
a relevant conceptual contribution to the well established
picture of the superradiance process [1]. Furthermore, we
have given an insightful picture at a fundamental micro-
scopic level of the very first stages of the collective dynam-
ics of the thresholdless microlaser [11] and of the vertical
cavity surface emitting laser [12].
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