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Primordial Adiabatic Fluctuations from Cosmic Defects
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In the context of “two-metric” theories of gravity there is the possibility that cosmic defects will pro-
duce a spectrum of primordial adiabatic density perturbations, when the speed characterizing the defect-
producing scalar field is much larger than the speed characterizing gravity and standard model particles.
This model will exactly mimic the standard predictions of inflationary models, with the exception of a
small non-Gaussian signal which could be detected by future experiments.
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I. Introduction.—Cosmology is entering a crucial stage,
where a growing body of high-precision data will allow
us to determine a number of cosmological parameters,
and to identify the mechanism that produced the “seeds”
for the structures we observe today [1]. There are cur-
rently two classes of models that could be responsible for
these—topological defect [2] and inflationary [3] models.
The main difference between them is related to causality.
Initial conditions for the defect network are set up on a
Cauchy surface that is part of the standard history of the
universe. Hence, there will not be any correlations between
quantities defined at any two spacetime points whose back-
ward light cones do not intersect on that surface. Inflation
pushes this surface to much earlier times, and if the infla-
tionary epoch is long enough there will be essentially no
causality constraints. This can also be seen by noting that
inflation can be defined as an epoch when the comoving
Hubble length decreases. It starts out very large, and per-
turbations can be generated causally. Then inflation forces
this length to decrease enough so that, even though it grows
again after inflation ends, it is never as large (by today) as
the preinflationary era value. Once primordial fluctuations
are produced they can simply freeze in comoving coordi-
nates and let the Hubble length shrink and then (for small
enough scales) grow past them.

As a step towards identifying the specific model that
operated in the early universe, one would like to deter-
mine which of the two mechanisms above was involved.
The presence of super-horizon perturbations might seem a
good enough test, but this is not the case: in defect models
(as well as open or L models) significant contributions
are generated after the epoch of last scattering due to
the integrated Sachs-Wolfe effect. The presence of the
“Doppler peaks” on small angular scales [4] is also not
ideal: Turok [5] has shown that a causal scaling source can
be constructed so as to mimic inflation and reproduce its
contribution to the cosmic microwave background (CMB)
anisotropies. This source is constructed “by hand,” and
there is no attempt to provide a framework in which it
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could be realized. In any case, it shows that inflation-
ary predictions are not as unique as one might think. We
should also mention, however, that a nice argument due to
Liddle [6] (see also [7]) shows that the existence of adia-
batic perturbations on scales much larger than the Hubble
radius implies that either inflation occurred in the past, the
perturbations were there as initial conditions, or causality
(or Lorentz invariance) is violated. On the other hand, it
is also possible to construct “designer inflation” models
[8] that would have no secondary Doppler peaks, although
these suffer from analogous caveats and they would still
be identifiable by other means [9,10].

Finally, there are Gaussianity tests. There have been
recent claims of a non-Gaussian component in the CMB
[11] (but see also [12]). Defects will generally produce
non-Gaussian fluctuations on small enough scales [13],
whereas the simplest inflationary models produce Gauss-
ian ones. It is possible to build inflationary models that
produce, e.g., non-Gaussianity with a chi-squared distri-
bution [14], but if one found non-Gaussianity in the form
of line discontinuities, then it is hard to see how cosmic
strings could fail to be involved.

This discussion shows that although defect and infla-
tionary models have of course a number of distinguish-
ing characteristics, there is a greater overlap between them
than most people would care to admit. It is also easy to
obtain models where both defects and inflation generate
density fluctuations [15,16]. The aim of this Letter is to
present a further example of this overlap. We discuss a
model where the primordial fluctuations are generated by
a defect network, but are nevertheless very similar to a
standard inflationary model. The only difference between
these models and the standard inflationary scenario will
be a small non-Gaussian component. A detailed discus-
sion will be presented in a forthcoming publication [17].

II. The model.—Our model follows the recent work
on so-called “varying speed of light” theories [18–24],
and more particularly the spirit of “two-metric” theories
[18,21,23,24], having two natural speed parameters, say
© 2000 The American Physical Society
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cf and c; the first is relevant for the dynamics of the scalar
field which will produce topological defects, while the
second is the ordinary speed of light that is relevant for
gravity and all standard model interactions.

We assume that cf ¿ c so that the correlation length
of the network of topological defects will be much greater
than the horizon size. We could, in analogy with [23,24],
define our effective theory by means of an action, and
postulate a relation between the two metrics. However,
this is not needed for the basic point we are discussing, so
we leave it for a future publication [17]. We concentrate on
the case of cosmic strings, whose dynamics and evolution
are better known than those of other defects [2,25–27]
although much of what we will discuss will apply to them
as well. Note that cf could either be a constant �say
�gf�00 � �c2

f�c2�g00� or, as in [23] one could set up a
model such that the two speeds are equal at very early and
at recent times, and between these two epochs there is a
period, limited by two phase transitions, where cf ¿ c.
As will become clear, the basic mechanism will work in
both cases, although the observational constraints on it will
be different for each specific realization.

The string network evolution is qualitatively analogous
to the standard case [2,25–27], and, in particular, a
“scaling” solution will be reached after a relatively short
transient period. The long-string characteristic length (or
“correlation length”) L will evolve as L � gcft, with
g � O �1�, while the string rms velocity will obey
yf � bcf, with b , 1. Note, however, that there
are some differences relative to the standard scenario.
The first one is obvious: if cf ¿ c, the string network
will be outside the horizon, measured in the usual way.
Hence these defects will induce fluctuations when they
are well outside the horizon, thus avoiding causality
constraints. Note that compensation now acts outside
the “cf horizon.” We expect the effect of gravitational
backreaction to be much stronger than in the standard
case [23,28]. The general effect of the backreaction is
to reduce the scaling density and velocity of the network
relative to the standard value [28]. Thus we should expect
fewer defects per cf horizon, than in the standard case.
However, despite this strong backreaction, strings will still
move relativistically. It can be shown [28] that although
backreaction can slow strings down by a measurable
amount, only friction forces [26,27] can force the network
into a strong nonrelativistic regime. Thus we expect yf

to be somewhat lower than cf, but still larger than c.
Only in the case of monopoles, which are pointlike, one
would expect the defect velocities to drop below c due to
graviton radiation [23]. This does not happen for extended
objects, since their tension naturally tends to make the
dynamics take place with a characteristic speed cf [29].
This is actually crucial: if the network was completely
frozen while it was outside the horizon (as in standard
scenarios [15]) then no significant perturbations would be
generated.
A third important aspect is that the symmetry breaking
scale, say S, which produces the defects can be signifi-
cantly lower than the grand unified theory scale, as density
perturbations can grow for a longer time than usual. The
earlier the defects are formed, the lighter they could be.
Proper normalization of the model will produce a further
constraint on S. Finally, in the case where cf is a time-
varying quantity which only departs from c for a limited
period, the defects will become frozen and start to fall in-
side the horizon after the second phase transition. Here we
require that the defects are sufficiently outside the horizon
and are relativistic when density fluctuations in the observ-
able scales are generated. This will introduce additional
constraints on model parameters, notably on the epochs at
which the phase transitions take place.

III. Cosmological consequences.—In the synchronous
gauge, the linear evolution equations for radiation and cold
dark matter perturbations, dr and dm, in a flat universe with
zero cosmological constant are
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where Qab is the energy-momentum tensor of the exter-
nal source, Q1 � Q00 1 Qii , a is the scale factor, “eq”
denotes the epoch of radiation-matter equality, and a dot
represents a derivative with respect to conformal time.
We will consider the growth of superhorizon perturbations
with ckh ø 1. Then Eq. (1) becomes

d̈m 1
�a
a

�dm 2
1
2

µ
�a
a

∂2µ
3a 1 8aeq

a 1 aeq

∂
dm � 4pGQ1 ,

(3)

and dr � 4dm�3. Its solution, with initial conditions
dm � 0, �dm � 0 can be written as
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Here X � jx 2 x0j and “S” indicates that these are the
“subsequent” fluctuations, according to the notation of
[30], to be distinguished from “initial” ones.

We are interested in computing the inhomogeneities at
late times in the matter era. When h0 ¿ heq, the Green
functions are dominated by the growing mode, ~a0�aeq,
so the function we would like to solve for is [30]

T �k; h� � lim
h0�heq!`

aeq

a0
G̃ �k, h0, h� . (6)

Consider the growth of superhorizon perturbations, for
which the transfer function can be written [30]
1371
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Linear perturbations induced by defects are the sum of
initial and subsequent perturbations:

dm�k; h0� � dI
m�k; h0� 1 dS

m�k; h0�

� 4pG�1 1 zeq�
Z h0

hi

dh Tc�k; h�Q̃1�k; h� ,

(8)

where hi is the epoch of defect formation. The transfer
function for the subsequent perturbations, those gener-
ated actively, was obtained in Eq. (7) for superhorizon
perturbations with ckh0 ø 1. To include compen-
sation for the initial perturbations, dI

m, we make the
substitution Tc�k; h� � �1 1 �kc�k�2�21T �k; h�, where
kc ~ �cfh�21 is a long-wavelength cutoff at the com-
pensation scale. This results from the fact that defect
perturbations cannot propagate with a velocity greater
than cf. For �cfh0�21 ø k ø �cfhi�21 the analytic
expression for the power spectrum of density perturbations
induced by defects is

P�k� � 16p2G2�1 1 zeq�2
Z `

0
dh F �k, h� jTc�k, h�j2,

(9)

where F �k, h� is the structure function which can be ob-
tained directly from the unequal time correlators [30–32].
It can be shown [31] that for a scaling network F �k, h� �
F �kh� which, combined with the above relations gives

P�k� ~
Z `

0
dh S �kh��h2 ~ k , (10)

where the function S is just the structure function, F ,
times the compensation cutoff function. Up until now we
considered only the spectrum of primordial (i.e., generated
at very early times) fluctuations induced by cosmic defects.
In our model a Harrison-Zel’dovich spectrum is predicted
just as in the simplest inflationary models. The final pro-
cessed spectrum will also be the same as for the simplest
inflationary models.

We investigate the Gaussianity of the string-induced
fluctuations as in [13]. The conclusions can easily be
extended for other defect models. In the standard cos-
mic string scenario the structure function F �k, h� has a
turnover scale at the network correlation length, kj �
20�cfh�21 [31,33]. At a particular time, perturbations
induced on scales larger than the correlation length are
generated by many string elements and are expected to
have a nearly Gaussian. On the other hand, perturba-
tions induced on smaller scales are very non-Gaussian
because they can be either very large within the regions
where a string has passed by or else very small outside
these. This allows us to roughly divide the power spec-
trum of cosmic-string-seeded density perturbations into a
nearly Gaussian component generated when the string cor-
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relation length was smaller than the scale under consid-
eration, and a strongly skewed non-Gaussian component
generated when the string correlation length was larger
(we call these the “Gaussian” and “non-Gaussian” con-
tributions, respectively). The ratio of these two compo-
nents may be easily computed by splitting the structure
function in (9), in two parts: a Gaussian part Fg�k, h� �
F �k, h� for k , kj (Fg � 0 for k . kj) and a non-
Gaussian part Fng�k, h� � F �k, h� for k . kj (Fng � 0
for k , kj). We can then integrate (9) with this Gauss-
ian/non-Gaussian split, to compute the relative contribu-
tions to the total power spectrum. The final result will
depend on the choice of compensation scale kc. If we
take the maximum compensation scale allowed by causal-
ity [34] [kc � 2�cfh�21] the Gaussian contribution to the
total power spectrum will be less than 5%. In any case,
the non-Gaussian contribution will always be smaller than
the Gaussian one if, as expected, the compensation scale
is larger or equal to the correlation length of the string net-
work (kc # kj). Departures from a Gaussian distribution
are scale independent and analogous to those of standard
defect models on large scales.

By allowing for a characteristic velocity for the scalar
field cf much larger than the velocity of light (and gravity),
we were able to construct a model with primordial, adia-
batic (dr � 4dm�3), nearly Gaussian fluctuations whose
primordial spectrum is of the Harrison-Zel’dovich form.
This is almost indistinguishable from the simplest infla-
tionary models (as far as structure formation is concerned)
except for the small non-Gaussian component which could
be detected with future CMB experiments. The Cl spec-
trum and the polarization curves of the CMB radiation pre-
dicted by this model should also be identical to the ones
predicted in the simplest inflationary models as the per-
turbations in the CMB are not generated “directly” by the
defects.

IV. Discussion and conclusions.—We presented further
evidence of the non-negligible overlap between topologi-
cal defect and inflationary structure formation models. The
key ingredient is having the speed of the defect-producing
scalar field much larger than the speed of gravity and
standard model particles. This provides a “violation of
causality,” as required by [6]. The only distinguishing
characteristic of this model, by comparison with the sim-
plest inflationary models, will be a small non-Gaussian
signal.

Admittedly our model could be considered “unnatural”
in the context of our present theoretical prejudices, and
the same can certainly be said about other examples such
as “mimic inflation” [5] and “designer inflation” [8]. Be
that as it may, however, the fact that these examples can
be constructed (and one wonders how many more are pos-
sible) highlights the fact that extracting robust predictions
from cosmological observations is a much more difficult
and subtle task than many experimentalists (and theorists)
believe.
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