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We present a new computational approach to finding borders between coding and noncoding DNA.
This approach has two features: (i) DNA sequences are described by a 12-letter alphabet that captures
the differential base composition at each codon position, and (ii) the search for the borders is carried out
by means of an entropic segmentation method which uses only the general statistical properties of coding
DNA. We find that this method is highly accurate in finding borders between coding and noncoding
regions and requires no “prior training” on known data sets. Our results appear to be more accurate than
those obtained with moving windows in the discrimination of coding from noncoding DNA.

PACS numbers: 87.15.Cc, 87.10.+e, 87.14.Gg
The entropic segmentation process partitions a hetero-
geneous DNA sequence into homogeneous subsequences,
which we term compositional domains [1–3]. Although
all the alphabets or mapping rules conventionally used in
describing DNA sequences had been tried, we had not been
able so far to assign any biological function to the obtained
domains. Here we introduce a new alphabet that takes into
account the differential base composition at each codon
position, and we find that the compositional domains cor-
relate to either coding or noncoding DNA regions. This
finding suggests the possibility of using the entropic seg-
mentation process for computational gene finding.

The computational recognition of genes is one of the
challenges in the analysis of newly sequenced genomes,
which is fundamental for modern functional genomics (the
goal of which is the search for the different functional
elements which make up the DNA sequences [4]).

The predictive power of current computational meth-
ods, although adequate in genomes for which a significant
fraction of genes are previously known [5], remains rather
low when faced with the large anonymous sequences now
being generated by genome projects. An example is pro-
vided by the DNA sequence of human chromosome 22,
where only 20 per cent of annotated genes have all ex-
ons predicted exactly [6]. A critical limitation of most
current methods is the need of “prior training,” given the
lack of experimentally annotated DNA sequences in most
of the recently sequenced genomes. Hence, new strategies
for computational gene finding that do not require prior
training on organism-specific data sets are needed, and the
entropic segmentation process may serve as a first step in
this direction.

Current methods of gene finding use a variety of bio-
logical information as potential sequence signals involved
in gene specification or sequence similarity database
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searches. These signals are mainly used to obtain prob-
able borders of coding regions, and they should be
obtained from elaborated biological information, which is
highly dependent on the particular genome considered.

Here we offer an entropic segmentation method to de-
tect borders between coding and noncoding DNA. Al-
though previous works based on the Shannon’s entropy
deal with the problem of finding patterns in DNA or pro-
tein sequences [7], their approaches are of local character,
instead of the global segmentation we address here. Our
method uses only the known statistical general properties
of coding DNA. In this way, the prior training on known
data sets is avoided; furthermore, the search for additional
biological information (such as splice sites or termination
signals) can also be avoided; however, such additional in-
formation could be easily incorporated and exploited in a
concrete implementation of the algorithm.

One of the most relevant and well-known statistical fea-
tures of coding regions is nonuniform codon usage [8].
This means that, inside coding regions, not all triplets of
nucleotides (called codons) occur with the same probabil-
ity. In particular, the probability of appearance of a nu-
cleotide is different in each of the three positions of the
triplets [9–11]. This may be due to the restrictions im-
posed by the genetic code and also probably to some kind
of preferences in the synonymous codon usage; but no mat-
ter what its origin is, this feature is not present in non-
coding DNA, so this property can be used to distinguish
between coding and noncoding DNA. In fact, based on
these differences, the first generation of gene prediction
programs, designed to identify approximate locations of
coding regions in genomic DNA, were developed [10].

To take into account this statistical property of coding
DNA, we develop a segmentation algorithm based on a
12-symbol alphabet. We define the phase of position,
© 2000 The American Physical Society



VOLUME 85, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 7 AUGUST 2000
i, of a nucleotide to the number j � i mod 3, where
j [ �0, 1, 2�. So, each of the nucleotides of the DNA
sequences can be substituted by one of the follow-
ing symbols: A12 � �A0, A1, A2, T0, T1, T2, C0, C1, C2,
G0, G1, G2�, where, for example, T2 means that we have
found a nucleotide T with phase � 2.

Our aim is to divide a DNA sequence into segments in
such a way as to maximize the difference in composition
between them, and where the composition is measured by a
12-dimensional frequency vector based on this 12-symbol
alphabet. We hope these segments will correspond to al-
ternating coding and noncoding regions. Our method im-
proves on that of Ref. [1] in several fashions. This method
has been used to define a measure of DNA sequence com-
positional complexity [2,12] and, recently, to determine
statistically the mobility edge of one-dimensional disor-
dered materials [13].

To compute the difference in composition between two
regions of DNA, in order to decide whether they are dif-
ferent domains or not, we use what we call “contrast func-
tion”: a comparative function which reaches low values
when the DNA regions being compared are both cod-
ing or noncoding and high values in other case (coding-
noncoding or vice versa).

As a contrast function we use the Jensen-Shannon
measure [14]. Consider a DNA sequence composed of
symbols belonging to A12, and define the 12-symbol
frequency vector F � �f�,j�, where � [ �A, T , C, G�
and j [ �0, 1, 2�, where f�,j is the relative number of
nucleotides of type � with phase j. Given two sequences
of lengths n1 and n2 with frequency vectors F1 and F2,
the Jensen-Shannon divergence is defined as

C �F1,F2� � 2 ln2�NH�F � 2 n1H�F1� 2 n2H�F2�� ,
(1)

where N � n1 1 n2, F � �n1�N�F1 1 �n2�N�F2 is
the frequency vector of the entire sequence obtained con-
catenating both subsequences, and H�F � is the Shannon
entropy, defined by H�F � � 2

P
�,i f�,j log2f�,j . Among

other interesting properties [1], C �F1,F2� is almost not
affected by the different sizes of the sequences being
compared.

To test the ability of C to separate coding from noncod-
ing DNA, we do the following control experiments. First
we take a known coding DNA sequence and a known non-
coding one, concatenate them, and go along the resulting
sequence with a moving pointer, computing C for the sub-
sequence to the left and the subsequence to the right of
the pointer. The results are shown in Fig. 1(a) (solid line).
Note that the maximum is clearly obtained in the boundary
between both regions (vertical dashed line). We also test
the effect of inserting one and two nucleotides between
the original sequences. This does not affect the global
composition, but changes the phase of the nucleotides of
the second sequence, and hence the resulting frequency
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FIG. 1. (a) C vs cutting position for a sequence obtained by
joining a coding region (gene carB of bacterium E. coli, 3222 bp
long) and a noncoding region (intergenic region between genes
leuO and ilvI of E. coli, 389 bp long); the dashed vertical line is
the border between both regions. (b) C vs cutting position for
a sequence obtained by joining two coding regions: genes carB
(3222 bp) and polB (2463 bp) of E. coli. The dashed vertical
line is the boundary between the two regions

vector F of the right hand side sequence can be consid-
erably different from the original. As can be seen, the
maximum value of C is again obtained in the boundary
between the two subsequences and the values are very
close to the ones obtained without shift. This is due to
the fact that in noncoding DNA all three phases are almost
indistinguishable.

Sometimes, especially in prokaryotic genomes, the cod-
ing regions are separated by a very small noncoding region,
too small to be separately identified on a statistical basis.
C is able to distinguish such coding regions, provided they
are in different phases, even if they are in consecutive sub-
regions. The only drawback is that if the regions are in the
same phase they would be identified as only one coding
region, but they could be easily separated by other meth-
ods. To show this, we analyze in Fig. 1(b) two coding
DNA regions, following the same as in Fig. 1(a). The solid
line (the two regions are in phase) reaches very low values
and does not seem to present a maximum in the bound-
ary of both regions (vertical dashed line). On the other
hand, when we introduce a phase shift (dashed and dotted
line), we obtain very high values of C and the maximum
is clearly reached in the vicinity of the boundary.

To partition a natural DNA sequence which, in general,
will be composed of several coding and noncoding regions,
we search for the partition that maximizes the composi-
tional difference between segments, as measured by C . If
the number of such regions is large, the problem presents
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high complexity, so we can use a heuristic algorithm [2]
which works as follows. We move a sliding pointer along
the sequence which divides at each position the sequence
into two subsequences and we compute C , and select the
point at which C reaches its maximum value (Cmax) and
compute its statistical significance (see below). If this sig-
nificance exceeds a given threshold s, then the sequence
is cut at this point. Otherwise the sequence remains un-
divided. The procedure continues recursively for each of
the two resulting subsequences created by each cut. Be-
fore a new cut is accepted, we check that the subsequences
formed by the cut remain significantly different from their
neighbors. The process stops when none of the possible
cutting points has a significance level exceeding s. We say
that such a sequence is segmented at the “s significance
level.”

The significance level smax�x� of a possible cutting point
with Cmax � x is defined as the probability of obtain-
ing this value or lower within a random sequence: i.e.,
smax�x� � Prob�Cmax # x�. As smax�x� does not seem to
admit an easy analytical expression, we have obtained an
approximation.

It is known that C has an asymptotic chi-square distri-
bution when the null hypothesis is true. So, given any
fixed cutting point (not necessarily the point where the
maximum is achieved), the probability of obtaining a given
value C # x within a random sequence verifies:

Prob�C # x� 	 F9�x� , (2)

where Fn is the chi-square distribution function with n de-
grees of freedom. Here n � 9 because, although we use a
12-symbol alphabet, there are three constraints:

P
� f�,j �

1�3 for j � 0, 1, 2—i.e., the number of nucleotides in
each phase is 1�3 of the total. If all values of C in all
possible cutting points along the sequence were indepen-
dent,

smax�x� � �F9�x��N , (3)

which is not the case because the value of C at a given cut-
ting point is strongly affected by the preceding values—the
frequency vectors are minimally affected by the change of
only one nucleotide. We have observed that the empirical
distribution obtained for Cmax by means of Monte Carlo
simulations [15], seems to be very similar to (3) but re-
placing N by an effective length, Neff, and introducing a
factor a , 1 multiplying x,

smax�x� � �F9�ax��Neff . (4)

Neff can be understood as the effective number of indepen-
dent cutting points and the factor a deals with the fact that
the limits of variation of Cmax are also reduced due to the
correlations. The fitting of the empirical distributions ob-
tained by means of Monte Carlo simulations to this model
gives Neff � 2.45 lnN 2 9.87 and a � 0.84 independent
of N [16].
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In Fig. 2 we show the results of the segmentation of a re-
gion of the genome of the bacterium Rickettsia prowazekii.
The shaded areas correspond to the coding regions
obtained from annotations (GenBank acc. AJ235269
[17]), and the vertical dotted lines are the positions of the
cuts produced by the segmentation algorithm. Note the
good agreement between cuts and known coding region
borders. Note also that, as can be inferred from Fig. 1(b),
the algorithm does not detect the border between two very
close coding regions in the same phase (marked with an
arrow in Fig. 2).

In order to quantify the coincidence between cuts ob-
tained using the segmentation algorithm and known bor-
ders between coding and noncoding regions, we introduce
the following quantity:

D �
1
2

"X
i

minjjbi 2 cjj

NT
1

X
j

minijbi 2 cjj

NT

#
,

(5)

where �bi� is the set of all borders between coding and
noncoding regions, and �cj� is the set of all cuts produced
by the segmentation, and NT the total length of the se-
quence. The first summation measures the discrepancy
between cuts and borders by adding for each real border
the distance to the closest cut. The second summation per-
forms the same operation, but now including for each cut
the distance to the closest real border. Both summations
are required to take into account not only the correctness
in the position of the cuts (D would be zero just when cuts
and borders coincide), but also the difference between the
number of borders and cuts. D can be viewed as an average
of the error in the determination of the correct boundaries
between coding and noncoding regions, so �1 2 D� is a
reasonable measure of the accuracy of the method.

Figure 3 plots 100�1 2 D� for the segmentations of
three bacterial complete genomes at several significance
levels. The accuracy of the method is reasonably good
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FIG. 2. Comparison between the known coding regions of
Rickettsia (shaded areas) and the cuts obtained at significance
level s � 99% (dotted lines).
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FIG. 3. Comparison of the accuracy of segmentation (open
symbols) and sliding window (closed symbols) approaches in
finding borders between coding and noncoding regions for three
complete bacterial genomes: Rickettsia prowazekii (�), Es-
cherichia coli (�), and Methanococcus jannaschii (�); we find
the best results when the training of the windows is carried out
using the same sequence as the one analyzed.

(between 70%–80%), especially since the method cannot
separate adjacent phase-coding regions (see Fig. 2).

For the sake of comparison with other methods, we also
include results obtained for the same bacteria with a sliding
window, which moves along the sequence and, at each po-
sition, some discriminant function is evaluated [18]. The
central nucleotide of the window is considered to be coding
when the value of the discriminant function is above a cer-
tain threshold, and noncoding when it is below. The posi-
tions where the discriminant function equals the threshold
are proposed to be borders between coding and noncod-
ing regions. The main problem with this method is the
determination of the threshold: the only way to obtain it
is to perform a prior training, i.e., to analyze a sequence
for which coding and noncoding regions are known and to
choose the value which maximizes the number of matches
for each window size.

In Fig. 3 we also include the values of 100�1 2 D� ob-
tained with the sliding window approach. These values
are always below those obtained using the segmentation
algorithm. One advantage of our method is that the seg-
mentation algorithm is not very sensitive to a change of
significance level. In fact, any segmentation with a signifi-
cance level within the range 90%–95% (the usual range)
gives similar results. On the other hand, the choice of the
window size seems to be critical, and the optimal values
are different for each bacterium.
The work of P. B. G., P. C., J. L. O., and R. R. R. is
partially supported by Grants No. PR98-0025095592 and
No. BIO99-0651-CO2-01 from the Spanish Government,
and I. G. and H. E. S. are supported by the NIH.

*Electronic address: rick@uma.es
[1] P. Bernaola-Galván, R. Román-Roldán, and J. L. Oliver,

Phys. Rev. E 53, 5181 (1996).
[2] R. Román-Roldán, P. Bernaola-Galván, and J. L. Oliver,

Phys. Rev. Lett. 80, 1344 (1998).
[3] J. L. Oliver, R. Román-Roldán, J. Pérez, and P. Bernaola-

Galván, Bioinformatics 15, 974 (1999).
[4] V. A. McKusick, Genomics 45, 244 (1997); Special

Genome Issue [Science 282 (1998)].
[5] M. Burset and R. Guigó, Genomics 34, 353 (1996).
[6] I. Dunham et al., Nature (London) 402, 489 (1999).
[7] G. D. Stormo and G. W. Hartzell, Proc. Natl. Acad. Sci.

U.S.A. 86, 1183 (1989); C. E. Lawrence et al., Science
262, 208 (1993).

[8] R. Grantham, C. Gautier, M. Gouy, M. Jacobzone, and
R. Mercier, Nucleic Acids Res. 9, R43 (1981).

[9] J. C. W. Shepherd, Proc. Natl. Acad. Sci. U.S.A. 78, 1596
(1981).

[10] R. Staden and A. D. McLachlan, Nucleic Acid Res. 10, 141
(1982); J. W. Fickett, Nucleic Acid Res. 10, 5303 (1982).

[11] H. Herzel and I. Grosse, Physica (Amsterdam) 216A, 518
(1995).

[12] P. Bernaola-Galván, P. Carpena, R. Román-Roldán, and
J. L. Oliver, Comput. Phys. Commun. 121–122, 136
(1999); W. Li, G. Stolovitzky, P. Bernaola-Galván, and
J. L. Oliver, Genome Research 8, 916 (1998).

[13] P. Carpena and P. Bernaola-Galván, Phys. Rev. B 60, 201
(1999).

[14] J. Lin, IEEE Trans. Inf. Theory 37, 145 (1991).
[15] To obtain empirically the distribution followed by Cmax we

generate, for each sequence length, an ensemble of 100 000
random sequences, and for each of them we compute Cmax
following the procedure described in the text.

[16] Note that, instead of using F9 to fit smax�x�, we could
have used a normal distribution which is known to be very
close to Fn for large enough values of n. Nevertheless,
we have observed that the approach used here is valid for
all values of n ranging from 1 to 9. The coefficients in
the logarithmic fit of Neff as a function of N depend on
the particular value of n, but the value a � 0.84 remains
unchanged.

[17] S. G. E. Anderson et al., Nature (London) 396, 133 (1998).
[18] A discriminant function is any function that can be com-

puted on a region of a DNA sequence which reaches differ-
ent values for coding and noncoding DNA. In particular,
we use here

P
�,j jf� 2 3f�,jj, where f�,j is the relative

number of nucleotides of type � with phase j, and f� is the
relative number of nucleotides of type � in any of the three
phases. See R. Staden, Nucl. Acid Res. 21, 551 (1984).
1345


