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Counting Statistics of an Adiabatic Pump
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We use the Schwinger-Keldysh formalism to derive the charge counting statistics of an adiabatic pump
based on an open quantum dot. The distribution function of the transmitted charge in terms of the time-
dependent S matrix is obtained. It is applied to a few simple examples of the pumping cycles. By a
chiral gauge transformation the problem is mapped onto a problem of pumping by voltage pulses. The
role of the chiral anomaly arising in this mapping is emphasized. Conditions for the ideal noiseless
quantized pump are discussed.

PACS numbers: 72.10.Bg, 05.45.–a, 73.23.–b
Adiabatic charge pumping has attracted considerable
theoretical and experimental interest. It occurs when the
Hamiltonian of the system is changed periodically with
time. At the end of the pumping cycle a finite charge
may be transmitted through the system. The idea is origi-
nally due to Thouless [1], who showed that in certain one-
dimensional systems the transmitted charge is quantized in
the adiabatic limit.

The majority of research efforts have focused on adia-
batic pumping through mesoscopic devices [2–8]. Such
mesoscopic pumps are based on one or several quantum
dots connected to leads. Motivated by efforts to build
a standard of electric current most investigations concen-
trated on closed devices where the Coulomb blockade ef-
fects play an essential role and can lead to quantization of
the transmitted charge [6–8].

Recently adiabatic pumping through open devices,
where the Coulomb blockade effects can be neglected,
also became a subject of both experimental and theoretical
investigations [3–5] which focused mainly on the average
charge transmitted during a pumping cycle and its meso-
scopic fluctuations. Thermal and quantum fluctuations
give rise to equilibrium and shot noise in the transmitted
charge. The fluctuations in the transmitted charge can be
measured and require a better understanding in view of
potential applications of adiabatic pumps as standards of
electric current.

In this Letter, we apply the Schwinger-Keldysh formal-
ism to the problem of charge counting statistics of an adia-
batic pump based on an open quantum dot [3,5].

We have greatly benefited from the extensive work on
the charge counting statistics by Levitov et al. [9–11].

We consider an adiabatic pump connected to the left and
right leads by multichannel quantum point contacts, as in
Ref. [5], each having n transverse channels [12]. Since the
conductances of the contacts are greater than the conduc-
tance quantum e2�h one can neglect the Coulomb block-
ade effects. Furthermore, the level broadening due to the
electron-electron interaction in the dot becomes compa-
rable to the mean level spacing only for electrons with en-
ergy greater than the Thouless energy Ec in the dot [13].
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Since the dwell time in the device is shorter than the in-
verse mean level spacing the inelastic level broadening
can be neglected if the temperature and the frequency of
pumping are smaller than Ec. The pump can therefore be
described by a 2n 3 2n unitary single-particle scattering
matrix S�t, e�, where e is the electron energy, and the S
matrix is a periodic function of time t with period t0;
S�t 1 t0, e� � S�t, e�.

In the adiabatic limit, when t0 exceeds the flight time
across the dot tW � h̄� Tr�Sy≠S�≠e� one can neglect the
energy dependence of the scattering matrix. We therefore
omit the energy argument of the S matrix and write it in
the n 3 n block form

S �

µ
r t0

t r 0

∂
. (1)

Here r (r 0) and t (t0) are left (right) reflection and trans-
mission matrices, correspondingly.

The transmission and reflection matrices in Eq. (1) can
be simultaneously diagonalized by the block-diagonal uni-
tary matrices U�t� and V �t� (see, for example, Ref. [14]),

S�t� � U�t�S̃�t�Vy�t� . (2)

Here S̃�t� is a matrix of the form Eq. (1) with real diagonal
reflection and transmission blocks. The ambiguity in the
definition of matrices U�t� and V �t� does not affect our
results.

In each cycle a number of electrons Q may pass through
the scattering region in the direction which depends on the
detailed form of S�t�. The average charge transmitted in
N pumping cycles was recently given by Brouwer [3]:

�Q� �
1
2i

Z Nt0

0

dt

2p
Tr

Ω
≠S
≠t

Sys3

æ
, (3)

where s3 � diag�1, 21� is a Pauli matrix with the n 3 n
block structure and the charge Q is measured in units of the
electron charge. We have used the representation where the
transmitted charge is written as half the sum of that through
the left and through the right leads [15]. Both quantum and
thermal noise lead to fluctuations in the transmitted charge
Q. As a result the charge transmitted in one cycle can be
described by a certain probability distribution.
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Here we calculate the probability PN �Q� to transmit the
charge Q upon completion of N pumping cycles. It is con-
venient to formulate the results in terms of the generating
function FN �l� of the moments of the transmitted charge
defined as [9]

FN �l� � �eiQl� �
Z

dQ PN �Q�eiQl. (4)

For the S matrix of the form Eq. (2) we obtain

FN �l� � eiN̂l det�1 1 S̃l�t�ñ�t, t0�
3 �S̃y

2l�t0� 2 S̃
y
l �t0�	 	 , (5)

where

S̃l�t� 
 exp�2is3l�4�S̃�t� exp�is3l�4� . (6)

The matrix ñ�t, t0� is defined as

ñ�t, t0� � Vy�t�n̂�t 2 t0�V �t0� . (7)

Here the diagonal matrix n̂�t 2 t0� is the time Fourier
transform of n̂�e� � diag�nL�e�, nR�e��, where nL�R��e� is
the energy distribution function of the left (right) lead. The
operator in the determinant in Eq. (5) should be under-
stood as an operator in the time space as well as a matrix
in the space of channels. Finally, the integer number N̂
defined as

N̂ �
1
2i

Z Nt0

0

dt

2p
Tr

Ω
Uy ≠U

≠t
s3 2 Vy ≠V

≠t
s3

æ
, (8)

is the contribution to the generating function arising from
the chiral anomaly (see below).

For the case of time-independent reflection matrix the
charge counting statistics were obtained in Ref. [10].
Equation (5) differs from the result of Ref. [10] by the
chiral anomaly term, Eq. (8), and generalizes the result of
Ref. [10] to general pumping cycles.

Expanding lnFN �l� to the first power of il one finds,
for the average transmitted charge, �Q� 


P
Q QPN �Q�,

�Q� �
Z Nt0

0

dt

4p
Tr�S̃�t�ñ�t, t0� �s3, S̃y�t0�	�jt0!t 1 N̂ .

(9)

In the absence of an external voltage ñ�t, t0� ! i�
�2p�t 2 t0 1 ih�	 1 i��2p�Vy�t�≠V �t��≠t for t0 ! t.
Expanding S̃y�t0� to the first power in t 2 t0 and using
Eq. (8) one obtains Brouwer’s result [3], Eq. (3).

The most readily measurable characteristic of the
pumped charge noise is its variance, ��Q2��. Expanding
lnFN �l�, Eq. (5), to the second order in il we obtain [9]

��Q2�� �
Z Z Nt0

0

dt dt0

�4Nt0�2

Tr�1 2 �Sys3S�t�Sys3S�t0�
sin2�p�t 2 t0���Nt0�	

.

(10)

We note that all the moments of the charge distribution
function can be expressed through the S matrix only, rather
than through the auxiliary matrices defined in Eq. (2).

Before presenting Eq. (5) we shall illustrate its applica-
tions with a few simple examples. We start with a single
channel case (n � 1) [16] with the S matrix depending on
time as

S�t� � eis3u�t��2S̃eis3u�t��2, (11)

where u�t 1 t0� 2 u�t� � 2p , and S̃ is time indepen-
dent. This form of the S matrix is equivalent to the phase
winding of the reflection amplitudes, r ! r exp�iu�t��
(r 0 ! r 0 exp�2iu�t��). We note that although such an S
matrix could arise from a moving point scatterer it can also
arise from a scatterer with a periodic in time Hamiltonian,
i.e., formed by two barriers whose heights and positions
periodically depend on time. The contribution from the
chiral anomaly in Eq. (8) coincides with the number of
cycles, N̂ � N . We concentrate first on a particularly
simple time dependence, u�t� � 2pt�t0. In this case
the determinant in Eq. (5) may be easily calculated in the
Fourier basis leading to

FN �l� �
Y

k

�1 1 nL�ek1N � �1 2 nR�ek�	 �eil 2 1� jtj2

1 �1 2 nL�ek1N �	nR�ek�
3 �e2il 2 1� jtj2	eiNl, (12)

where ek � p�2k 1 1���Nt0� are fermionic frequencies.
At small temperature T ø 1�t0, V , this expression sim-
plifies substantially, leading to

FN �l� � �eiljrj2 1 jtj2�N �jrj2 1 e2iljtj2�Nt0V��2p�,
(13)

where V is a voltage applied between the left and right
leads, which is chosen to be such that Nt0V��2p� is an
integer [9]. In the absence of the external voltage Eqs. (4)
and (13) lead to the binomial distribution function of the
charge transmitted through the adiabatic pump,

PN �Q� � C
Q
N jrj2Q�1 2 jrj2�N2Q , (14)

where C
Q
N 
 N!��Q! �N 2 Q�!	. Note that only the

integer values of the transmitted charge have nonzero
probability to be detected. The physical meaning of this
expression is that each pumping cycle is associated with an
attempt to transfer one electron. The success probability
of such an attempt is given by the reflection coefficient
jrj2, whereas the probability of failure is 1 2 jrj2. The
above statistics should be compared with the case of the dc
voltage applied across the scattering region in the absence
of pumping. This case may be obtained from Eq. (13) in
the limit N ! 0, whereas Nt0V��2p� ! Ñ 2 integer.
We immediately recover the familiar result [9]

PÑ �Q� � C
Q
Ñ jtj2Q�1 2 jtj2�Ñ2Q . (15)

This distribution is also binomial, however the probability
of success is given by the transmission coefficient jtj2. The
variances of the transmitted charge for the adiabatic pump
and for applied dc voltage coincide and are given by

��Q2�� � jtj2�1 2 jtj2�N , (16)

leading to the maximal noise power in both cases at jtj2 �
jrj2 � 1�2.
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The binomial distribution, Eq. (14), was derived above
for the simplest time dependence of the form r�t� �
r exp�2pit�t0�. As shown in Refs. [9,10] the same result
holds for a more general class of “coherent” pumping
strategies,

eiu�t� �
e2pit�t0 2 z

1 2 z�e2pit�t0
, (17)

where z is a complex number with jzj , 1.
Such coherent pumping strategy minimizes the variance

of the transmitted charge. Indeed, substituting the S ma-
trix of the form Eq. (11) into Eq. (10) and minimizing
��Q2�� with respect to eiu�t� [17], one finds that the coherent
pumping, Eqs. (11) and (17), leads to the minimal variance
given by Eq. (16).

Next we consider a 2 3 2 scattering matrix with real re-
flection and transmission amplitudes given by r � 2r 0 �
cos�2pt�t0� and t � t0 � sin�2pt�t0�, respectively. In
this case U�t� � V �t� � 1 leading to N̂ � 0, and ñ is
the equilibrium distribution function. This is an example
of a “pump” which produces only noise and no average
current. The noise, however, has nontrivial quantum cor-
relations (see below) and may be studied experimentally.
The absence of the average current is useful to increase
“noise to current” ratio. One can show that FN �l� in
Eq. (5) is an even function of l, and is therefore real. As
a result one may employ the method of Ref. [11] to com-
pute the determinant of the operator in Eq. (5): one mul-
tiplies this operator by its Hermitian conjugate and takes
the square root. The resulting operator may be written
as 1 1 �1 2 ñ�S̃y

l S̃2lñ 1 ñS
y
2lS̃l�1 2 ñ�. In the energy

representation it has a finite number of the off-diagonal
matrix elements and its determinant can be straightfor-
wardly evaluated. This way one obtains

FN �l� �

∑
1 1 cosl

2

∏N

. (18)

There are three possible values of the transmitted charge in
each cycle: Q � 0 with the probability 1�2, and Q � 61
with the probability 1�4 each.

We note that the logarithmic derivative
iVy�t�≠V �t��≠t is analogous to the instantaneous matrix
of “voltages” applied to the incoming channels. The
integral of this quantity can be interpreted as the number
of transmission attempts [9]. The different outcomes of
such attempts lead to the noise of the pumping current.
In general the probability distribution of the transmitted
charge is not binomial. If the “voltage” matrix cannot
be diagonalized simultaneously with the reflection and
transmission matrices the distribution function of the
transmitted charge does not factorize into binomial
distributions of elementary transmission processes.

In contrast, the matrix U�t� corresponds to the outgoing
channels and enters the final expression (5) only through
the chiral anomaly term (8), and therefore contributes to
the average current but not to the noise. For example, the
1296
pumping cycle of the form S�t� � U�t�S̃ at zero tempera-
ture would produce a noiseless quantized pumping current.

We turn now to the derivation of Eq. (5). To this end we
model the leads by a 2n-component vector of chiral incom-
ing fermions �cL�x, t�, cR�x, t�	 and 2n-component vec-
tor of chiral outgoing fermions �jL�x, t�, jR�x, t�	. The
action for, e.g., the left lead is written as

SL �
Z
C

dt
Z 0

2`
dx cL�≠t 1 ŷL≠x�cL

1 jL�≠t 2 ŷL≠x�jL , (19)

where ŷL is a diagonal n 3 n matrix of the left lead chan-
nel velocities. In this expression the time integral runs
along the Keldysh contour, C , from t � 0 to t � Nt0
and then back to t � 0. The right lead is described by the
similar action with the space integral running from x � 0
to x � 1`, and the velocity matrix ŷR . Finally the in-
coming and outgoing channels at x � 0 are related by the
time-dependent S-matrix operator

j�0, t� � ŷ1�2S�t�ŷ21�2c�0, t� . (20)

The current operator has a form I � �IL 1 IR��2,
where

IL�t� � �cL�02�ŷLcL�02� 2 jL�02�ŷLjL�02�	 . (21)

The operator of the charge transmitted in N cycles is given
by Q �

RNt0

0 dt I�t�. Finally, the generating function
may be written as

FN �l� �
Z

D�c , j	e2SL2SR1�i�2�
R

C
dt l̂�t�I�t�

, (22)

where l̂�t� is equal to l on the forward and 2l on the
backward part of the Keldysh contour. The fermion fields
in this integral obey the boundary condition, Eq. (20). One
has to specify the initial, t � 0, density matrix, which im-
plicitly defines the Green functions. We fix the occupa-
tion numbers in the incoming channels of the left and right
leads to be nL�e� and nR�e� correspondingly, whereas the
outgoing channels are supposed to be initially empty in ac-
cord with the scattering setup.

The subsequent calculations amount to the evaluation of
the Gaussian integral in Eq. (22). To this end we first make
the chiral gauge transformation of the fermionic fields:
c�x, t� ! V �t�c�x, t� and j�x, t� ! U�t�j�x, t�. As a
result, the boundary condition for the new fermions con-
tains the S̃�t� matrix only and the action acquires an addi-
tional time-dependent (matrix) chemical potential term

dS �
Z
C

dt
Z

dx c�Vy≠tV 	c 1 j�Uy≠tU	j . (23)

Such a potential term results in the redefinition of the
density matrix according to Eq. (7). Importantly, upon
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the chiral gauge transformation the expression for the
current acquires an extra term I ! I 1 1��4pi� 3

Tr�≠Uy�t�s3U�t��≠t 2 ≠Vy�t�s3V �t��≠t� arising
from the chiral anomaly [18].

Since the source field, l̂�t�, is a constant on both
branches of the Keldysh contour, one may eliminate theR

l̂I term from the action by the time-independent gauge
transformation [9], e.g., cL ! eiu�x202�l�2cL on the
forward branch of the contour and cL ! e2iu�x202�l�2cL

on the backward branch. Such transformation leads to the
change in the phase of the forward scattering amplitude
and can be taken into account by a redefinition of the S̃ ma-
trix in the boundary condition, Eq. (20), S̃ ! S̃6l on the
forward (backward) branches, with S̃l defined in Eq. (6).

The subsequent steps are straightforward. One inte-
grates out all degrees of freedom except for those which
reside directly at the scatterer, x � 0. Using the boundary
condition, Eq. (20), with S̃6l matrix, one eliminates the in-
coming degrees of freedom, c�x � 0, t�. The remaining
Gaussian integral over the outgoing fermions, j�x � 0, t�,
can be straightforwardly evaluated, resulting in the deter-
minant written in Eq. (5). The remaining term, exp�iN̂l�,
is the contribution from the chiral anomaly, as explained
above.

To conclude, we have derived a general expression for
the counting statistics of the charge transmitted through a
system described by a time-dependent S matrix. The only
limitations of our result are the requirements of adiabatic-
ity and the absence of inelastic processes in the scattering
region. The absolute minimum of the noise power may
be achieved by the coherent pumping strategy, in which
case the charge distribution is given by the product of bi-
nomial distributions. We point out the major role played
by the chiral anomaly contribution to the average transmit-
ted charge.
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