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Wetting Layer Thickness and Early Evolution of Epitaxially Strained Thin Films
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We propose a physical model which explains the existence of finite thickness wetting layers in epitax-
ially strained films. The finite wetting layer is shown to be stable due to the variation of the nonlinear
elastic free energy with film thickness. We show that anisotropic surface tension gives rise to a metastable
enlarged wetting layer. The perturbation amplitude needed to destabilize this wetting layer decreases
with increasing lattice mismatch. We observe the development of faceted islands in unstable films.

PACS numbers: 68.55.Jk, 68.35.–p, 81.15.Aa
Epitaxial deposition of a thin film onto a substrate
in cases involving lattice mismatch is central in the
fabrication of semiconductor and optoelectronic devices.
The lattice mismatch between the substrate and the film
generates strain in the deposited film, which can cause
film instability unfavorable to uniform flat film growth.
The strained film can relax either by the introduction
of dislocations or by the formation of dislocation-free
islands on the film surface via surface diffusion. Early
film growth tends to occur via the second mechanism and
we shall consider only dislocation-free films. It has been
observed experimentally [1,2] that dislocation-free flat
films of less than a certain thickness (the critical wetting
layer) are stable to surface perturbations, while thicker
films are unstable. The thickness of the wetting layer is
substance dependent and decreases with increasing lattice
mismatch strain [2], ´ � �as 2 af��af , where as and
af are the substrate and film lattice constants. Above
the critical wetting layer, 3D dislocation-free islands
form. Prediction and control of wetting layer thickness
and an understanding of early thin film evolution are
important for the improved fabrication of semiconductor
devices.

Despite considerable efforts (see, e.g., Refs. [3–8]), the
physics of the critical wetting layer is poorly understood,
and the purpose of this Letter is to study its properties by
considering the following two important questions: First,
why is there a critical, stable wetting layer and what con-
trols its thickness? Second, since in most cases heteroepi-
taxial growth is done below the roughening transition, how
does anisotropic surface tension affect the thickness of the
critical wetting layer? Here we attempt to answer these
questions and to study early film evolution without depo-
sition. A later paper will look at the effects of deposition
and long-term growth.

We studied an elastically isotropic system under plane
strain [9], which causes the system to be effectively two
dimensional. The surface of the solid is at y � h�x, t� and
the film is in the y . 0 region with the film-substrate in-
terface at y � 0. The system is invariant in the z direction,
and all quantities are calculated for a section of unit width
in the z direction.
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We assume that surface diffusion is the dominant mass
transport mechanism, leading to the following evolution of
the surface profile [10]:

≠h�x, t�
≠t

� K
≠2

≠x2

dF
dh�x, t�

, (1)

where F is the free energy of the system and K is a posi-
tive constant. The free energy is composed of elastic and
surface terms:

F � Fel 1
Z

dx g

q
1 1 �≠h�≠x�2 , (2)

where g is the surface tension and Fel is the elastic free
energy, which also includes any elastic contributions to the
surface tension. We express Fel as Fel � F

�0�
el 1 dFel,

where F
�0�
el is the elastic free energy of the zero strain

reference state, and dFel is calculated from linear elasticity
theory. For each value of x, the reference state corre-
sponds locally to a flat film of thickness h�x�, i.e., F

�0�
el �R

dx
Rh�x�

2` dyf �0�
y ���h�x�, y���, where f �0�

y ���h�x�, y��� is the
elastic free energy per unit volume of a flat film of
thickness h�x�.

Because of the lateral variations in this reference state,
the reference stress does not satisfy the condition of me-
chanical equilibrium. However, the necessary corrections
vanish in the limit a�l ! 0, where a is the length scale
over which stress varies in the y direction and l is the
lateral length of typical surface structures. This is be-
cause in this limit there are no lateral variations in the
reference stress. Since typical experimental islands have
l � 100 nm, and a is of the order of the lattice constant
(see below), the corrections to the reference stress are small
and have been ignored.

For convenience we work in terms of the reference
elastic free energy per unit length in the x direction,
f

�0�
el ���h�x���� �

Rh�x�
2` dyfy���h�x�, y���, instead of the free en-

ergy per unit volume. As discussed below, the dependence

of f
�0�
el on h is a nonlinear phenomenon and cannot be

calculated from linear elasticity theory.
For small strains, the stress is linear in the strain, i.e.,

sij � sm
ij 1 cijklekl , where repeated indices are summed
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over. Here eij is the strain tensor, sij is the total stress
tensor, sm

ij is the stress in the zero strain reference state
due to the lattice mismatch, and cijkl are the elastic coef-
ficients of the material. According to linear elasticity the-
ory, dFel �

R
dx

Rh�x�
2` dy�sm

ijeij 1
1
2cijkleijekl�. In terms

of the stress tensor, we find

Fel �
Z

dx f
�0�
el 1

Z
dx

Z h�x�

2`
dy

3

µ
1
2

Sijklsijskl 2
1
2
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m
ijsm

kl

∂
, (3)

where we have used the inverted Hooke’s law
eij � Sijklskl . Sijkl are the compliance coefficients
of the material. By combining Eqs. (2) and (3), we arrive
at an expression for dF�dh at the surface:

dF
dh

�
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�0�
el
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1
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2

Sijklsijskl
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2
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∂
V , (4)

where V is the atomic area of the solid, k is the surface
curvature, eg�u� � g�u� 1 ≠2g�≠u2 is the surface stiff-
ness, and u is the angle between the normal to the surface
and the y direction. Since Eq. (4) gives dF�dh at the solid
surface, all variables in the equation are also given at the
surface. Both df

�0�
el �dh and sm

ij must vanish when h # 0,
since then the film is absent. In principle, Eq. (4) should
also contain derivatives of g with respect to h. However,
we believe that the variation of surface tension with h away
from a step dependence is due to elastic effects. Since we
included all elastic contributions in the zero-strain elastic
free energy, we modeled g as a step function, taking the
value of the substrate surface tension for h # 0 and the
film surface tension for h . 0. Thus all partial derivatives
of g with respect to surface height vanish and were omit-
ted from Eq. (4).

Equations (1) and (4) form a complete model of film
evolution. In order to solve this model, one has to evalu-
ate g�u�, Sijkl , f

�0�
el , and sm

ij . The first two are material
properties, while the last two are properties of the refer-
ence state, from which one can also calculate the stress
tensor sij using linear elasticity theory. Before estimating
these quantities we present the results of the linear stability
analysis of an isotropic flat film of thickness C. The analy-
sis was carried out using a method similar to those used in
[11] for an infinite film. The height of the perturbed film
takes the form h�x, t� � C 1 d�t� sinkx. We assumed
that the force on the surface due to surface tension is neg-
ligible compared to the force due to mismatch stress, and
that the stress sij vanishes deep in the substrate. Using
linear elasticity theory and Eq. (4) with these assumptions,
we calculated dF�dh to first order in the perturbation, and
combined the results with the general evolution equa-
tion (1) to obtain the following equation for the evolution
of d�t�:
dd

dt
� K

∑
2k4 eg0 2 k2 d2f

�0�
el

dh2 1 2k3 h2�h�
M

∏
h�C

d ,

(5)

where eg0 � eg�u � 0�, M is the plain strain modulus de-
rived from the elastic constants of the isotropic material,
and h�h� is sm

xx at the surface of a flat film of thickness
h. sm

xy vanishes because the flat film is hydrostatically
strained, and sm

yy � 0 since in the reference state the force
on the surface in the y direction vanishes.

Equation (5) implies that the flat film is stable at all
perturbation wavelengths as long as

�h�C��4

M2 # eg0
d2f

�0�
el

dh2

Ç
h�C

, (6)

and the equality holds at the critical wetting layer thick-
ness. eg0 is positive if u � 0 is a surface seen in the equilib-
rium free crystal [12]. At a perfect facet, eg0 ! `. Hence,
as u � 0 is a facet direction for most of the materials used
in epitaxial films, eg0 is large and positive. Therefore, a
linearly stable wetting layer of finite thickness can exist
only if d2f

�0�
el �dh2 . 0. Note that h depends linearly on

the lattice mismatch ´, and hence the left-hand side of (6)
is proportional to ´4, while the right-hand side of (6) is
proportional to ´2 due to the dependence of f

�0�
el on lat-

tice mismatch. Therefore, if d2f
�0�
el �dh2 . 0, the thick-

ness of the wetting layer increases with decreasing lattice
mismatch and diverges in the limit ´ ! 0.

Having recognized the importance of the elastic free en-

ergy of the reference state, f
�0�
el , and its dependence on film

thickness, we now turn to estimating it. This free energy
depends strongly on the mismatch stress sm

ij , and its de-
pendence on the y coordinate. As a result of the sharp
interface between the substrate and the film, we expect sm

ij
to behave as a step function of y with small corrections
due to elastic relaxation. If we ignore these small cor-
rections, the resulting free energy f

�0�
el is proportional to

film thickness, and its second derivative vanishes. Hence,
according to Eq. (6), the thickness of the critical wetting
layer vanishes. The correction due to elastic relaxation is
therefore extremely important. It turns out that this correc-
tion vanishes within linear elasticity theory. This led some
investigators [6] to claim that the variation in free energy
over the interface was due to nonelastic effects, e.g., film/
substrate material mixing over the interface. However, we
claim that this is not necessary, since nonlinear elasticity
can explain the corrections to the step-function form of the
free energy.

Ideally, first principles, substance-specific calculations
should be performed in order to evaluate h�h� and f

�0�
el �h�,

and we intend to carry out such calculations in the future.
However, the qualitative general behavior of f

�0�
el �h� can be

obtained from much simpler models. To demonstrate this
point we carried out the calculation for two-dimensional
networks of balls and springs of varying lattice-type and
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spring constants. In this model the balls are connected
by springs which obey Hooke’s law. The natural spring
length had a step variation over the interface. The film
underwent a hydrostatic transformation strain so that its
lattice constant became that of the substrate. The network
was then allowed to relax while being constrained in the x
direction and free in the y direction, so that the system
boundaries in the x direction were fixed to the natural
substrate length.

We calculated the mismatch stress within the film and
at the film surface for films of varying thickness. How-
ever, we decided to use the step function form of mismatch
stress, h�h . 0� � M´, where M´ is the mismatch stress
in an infinite film, as variations in h only slightly altered
the wetting layer thickness predicted from (6). We also
calculated the nonlinear elastic free energy of the relaxed
system per unit length in the x direction for various film
thicknesses. A typical behavior of df

�0�
el �dh is shown

in Fig. 1, where it is seen that f
�0�
el �h� indeed depends

on the thickness h. Moreover, the model predicts that
d2f

�0�
el �dh2 . 0, and therefore, according to the inequal-

ity (6) and the discussion following it, there should be a
linearly stable wetting layer, whose thickness is finite and
increases with decreasing lattice mismatch.

The dependence of f
�0�
el on h arises within our model

from the elastic relaxation at the surface and its coupling
to the relaxation at the interface between the substrate and
the film. A similar effect should occur in real systems due
to surface reconstruction, for example.

Our calculations indicate that the general qualitative
behavior of the mismatch stress and the elastic energy
is not sensitive to the lattice structures and the values of
the spring constants. While the detailed behavior close to
the substrate-film interface [&3 ML (monolayers)] varied
between different networks, it showed the same general

FIG. 1. Variation with film thickness of the elastic free energy
of a relaxed ball and spring system, df

�0�
el �dh, as a function of

film thickness h. The free energy is normalized to the infinite
film linear elastic energy density, 1

2 M´2. hml is the thickness
of 1 ML.
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behavior. In all systems d2f
�0�
el �dh2 showed exponential

decay with a decay length of about a monolayer away
from the interface. For the calculations used later in this
paper we used the function df

�0�
el �dh � M´2�1 2

0.05 exp�2h�hml���2 for h . 0 and df
�0�
el �dh �

0 for h # 0. hml is the thickness of 1 ML. The
factor M´2�2 on the right-hand side ensures that the
above expression becomes exact for a film of infinite
thickness.

By combining this behavior of df
�0�
el �dh with the in-

equality (6), we obtained an expression for the linear sta-
bility wetting layer thickness hc:

hc�hml � max�1, ln�eg0��40M´2hml��	 . (7)

Thus, the wetting layer thickness increases with decreasing
lattice mismatch, as observed in experiments.

In previous works [5,6,8] on the physics of the wetting
layer it was assumed that the reference state energy varia-
tion is a smooth function of h, mainly in order to avoid
nonanalyticities at the interface. In contrast, our reference
state energy variation behaves as a step function of the
surface height with a small correction. We have shown
that the nonanalytic behavior at the interface is realistic and
that the smooth elastic energies in [5,6,8] are unphysical.
Tersoff [3] in effect calculated df

�0�
el �dh via an effective

atomic potential for Si�Ge under 4% lattice mismatch.
However, he did not address the stability of the flat film
to small perturbations. Nevertheless, since the function
he obtained had d2f

�0�
el �dh2 . 0, a positive wetting layer

thickness can be predicted from his results.
In order to model the early evolution of faceted is-

lands, and to study the effect of an anisotropic form of
surface tension on the wetting layer, we used the cusped
form of surface tension given by Bonzel and Preuss [13],
which shows faceting in a free crystal: g�u� � g0�1 1

bj sin ���pu��2u0����j�, where b 
 0.05 and u0 is the angle
of maximum g. The value of g0 was taken as 1 J�m2 in
the substrate and about 75% of that in the film (as is the
case for Si�Ge). This ensures a wetting layer of at least
1 ML. We considered a crystal which facets at 0±, 645±,
and 690± with u0 � p�8. The cusp gives rise to eg � `,
and hence all faceted surfaces will have an infinite linearly
stable wetting layer. However, a slight miscut of the low-
index surface leads to a rounding of the cusp, which can
be described by

g�u� � g0

"
1 1 b

s
sin2

µ
p

2u0
u

∂
1 G22

#
, (8)

where, for example, G � 500 corresponds to a miscut
angle, Du 
 0.1±.

According to Eq. (7), anisotropic surface tension greatly
enlarges the linearly stable wetting layer thickness. Does
this conclusion survive beyond linear stability analysis?
When a linearly stable flat film is perturbed strongly so
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FIG. 2. Evolution of a randomly perturbed film, in which per-
turbations were larger than the critical perturbation amplitude.
Lattice mismatch in this film is 4%. The initial film surface is
shown as a thin solid line. The dashed line shows the film sur-
face at a later time. The linear wetting layer thickness is shown
as a thick solid line.

that the surface orientation in some regions is far from
the u � 0 direction, the local surface stiffness in these
regions is much smaller than the u � 0 stiffness. This
tends to destabilize the linearly stable film. Indeed, we
carried out Monte Carlo simulations which showed that
films thinner than the linear wetting layer were unstable
to random perturbations greater than a certain critical am-
plitude (see Fig. 2). The linear elastic energy was calcu-
lated by the method used by Spencer and Meiron [14].
Hence films thinner than the linear wetting layer thickness
are metastable. When large perturbations were applied,
faceted islands developed in the film, which underwent
Ostwald ripening at later stages of the evolution.

The critical perturbation amplitude was found to be
proportional to ´22. It was largely independent of film
thickness for h , hc as long as perturbations did not
penetrate the substrate, when it became much larger. It
was also largely independent of cusp smoothness G, unlike
the linear wetting layer thickness which depended strongly
on G. The size of the critical perturbation amplitude in
monolayers is plotted as a function of lattice mismatch in
Fig. 3. The linear wetting layer thickness for G � 500,
M � 1.5 3 1011 N�m2, and hml � 5 Å is also shown for
comparison. When the lattice mismatch is small, the criti-
cal perturbation amplitude is much larger than a mono-
layer. Hence, in practice, flat films thinner than the linear
critical thickness are stable at small lattice mismatch. On
the other hand, for large mismatch a perturbation smaller
than a monolayer is sufficient in order to destabilize the
linearly stable wetting layer. Therefore, in practice, the
wetting layer will be a single monolayer at large lattice
mismatch. Our predictions cannot be compared with cur-
rent experiments involving the wetting layer and lattice
mismatch variation [2], since they were carried out with
FIG. 3. Variation of critical perturbation amplitude with lattice
mismatch.

deposition flux. We hope this work will encourage such
experiments to be performed, and we are currently adding
deposition to our model.
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