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We consider the universality class of the two-dimensional tricritical Ising model. The scaling form
of the free energy leads to the definition of universal ratios of critical amplitudes which may have
experimental relevance. We compute these universal ratios by a combined use of results coming from
perturbed conformal field theory, integrable quantum field theory, and numerical methods.
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A unifying principle in the study of critical phenomena
goes under the name of universality [1]. In the vicinity
of a phase transition, when the correlation length is much
longer than any microscopic scale, one can assign each
system to a universality class, which is identified by its
dimensionality D, the symmetry properties of the order
parameters, and the number of relevant fields. The first
characteristic of a given universality class is the set
of critical exponents, expressed in terms of algebraic
expressions of the conformal dimensions of the relevant
fields. Additional data of a universality class may be
derived by the scaling properties of the free energy alone.
These data—called universal ratios—are pure numbers,
obtained by taking particular combinations of various
thermodynamical amplitudes so as to cancel any depen-
dence on the microscopic scales. Together with critical
exponents, universal ratios are ideal fingerprints of the
universality classes. From an experimental point of view,
presently there is a lot of literature on universal ratio
measurements of various systems extending from binary
fluids to magnetic systems and polymer conformations
(for an extensive review on the subject, see [2]).

In recent years, due to the theoretical progress achieved
in the study of two-dimensional models (at criticality by
the methods of conformal field theory (CFT) [3], and away
from criticality by the approach of perturbed conformal
theories [4]), several universal quantities have been com-
puted by different techniques for a large variety of bi-
dimensional systems, such as the self-avoiding walks [5,6],
the Ising model [7–10], the q-state Potts model [11], to
name few. In this Letter we will focus on the first de-
termination of some universal ratios relative to the class
of universality of the 2D tricritical Ising model (TIM)
for which very few universal quantities are known (see
[2,12]). Whereas the 3D TIM describes, for instance, the
universality class of an antiferromagnet with strong uni-
axial anisotropy like FeCl2, its 2D version can describe
the tricritical behavior of a binary mixture of thin films of
He3-He4 [13] or order-disorder transitions in absorbed sys-
tems [14] (for a review on the theory of tricritical points,
see [12]). Hence there is an obvious interest in computing
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the most ample set of universal data for this universality
class and in testing the theoretical predictions versus their
experimental determinations.

In a continuum version of the TIM (which is, after all, a
special representative of this universality class), it is conve-
nient to adopt a Landau-Ginzburg (LG) formulation based
on a scalar field F�x� with F6 interaction. The LG ap-
proach permits a clear bookkeeping of the symmetry prop-
erties of each order parameter and an easy understanding
of the phase diagram of the model, at least qualitatively.
The class of universality of the TIM is then described by
the LG Euclidean action

A �
Z

dDx

∑
1
2

�≠mF�2 1 g1F 1 g2F2 1 g3F3

1 g4F4 1 F6

∏
,

with the tricritical point identified by the bare condi-
tions g1 � g2 � g3 � g4 � 0. Adopting a magnetic
terminology, the statistical interpretation of the coupling
constants is as follows: g1 plays the role of an external
magnetic field h, g2 measures the displacement of the
temperature from its critical value �T 2 Tc�, g3 may be
regarded as a staggered magnetic field h0, and finally g4
may be considered a chemical potential m for the vacancy
density. Dimensional analysis shows that the upper
critical dimension of the model is D � 3, where tricritical
exponents are expected to have their classical values
(apart from logarithmic corrections). In two dimensions,
although the mean field solution of the model cannot be
trusted for the strong fluctuations of the order parameters,
an exact solution at criticality is provided by CFT. In
fact, the TIM is described by the second model of the
unitary minimal series of CFT [3], with central charge
equal to C �

7
10 . There are six primary fields, identified

with the normal ordered composite LG fields [15], which
close an algebra under the operator product expansion
(OPE). Only four of them are relevant (i.e., with con-
formal dimension D , 1): s � w1 � F (D1 �

3
80 ),

´ � w2 �: F2:�D2 �
1
10 �, s0 � w3 �: F3:�D3 �

7
16 �,
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and t � w4 �: F4:�D4 �
3
5 �. The fields ´ and t are even

under the Z2 spin symmetry whereas s and s0 are odd.
There is another Z2 symmetry of the model (related to its
self-duality), under which D´D21 � 2´, DtD21 � t,
whereas the magnetic order parameters are mapped onto
their corresponding disorder parameters. Each of the
above relevant fields can be used to move the TIM away
from criticality (the resulting phases of the model are
discussed in [16]).

In order to derive the scaling form of the free energy
and the set of universal ratios for the 2D TIM, let us
first normalize the two-point functions of the fields as
�wi�r�wi�0�� � Ai

r4Di when r ! 0 (in the perturbed CFT
approach to the model, Ai � 1). When the TIM is moved
away from criticality by means of one (or several) of its
relevant fields, with the resulting action A � ACFT 1P

p gp

R
d2x wp�x�, a finite correlation length j generally

appears. Its scaling form may be written in four possible
equivalent ways, according to which coupling constant is
selected as a prefactor

j � a �Kigi�2�1�222Di�Li

∑
Kjgj

�Kigi�fji

∏
, (1)

where a is a microscopic length scale, fji � 12Dj

12Di
, and

Li are universal homogeneous scaling functions of the ra-
tios

Kjgj

�Kigi�fji . The terms Ki are nonuniversal metric factors
which depend on the unit chosen for measuring the ex-
ternal source gi , alias on the particular realization of the
universality class. Let f�g1, g2, g3, g4	 be the singular part
of the free energy (per unit volume). According to which
coupling constant is selected as a prefactor, it can be pa-
rametrized in four possible equivalent ways as

f�g1, g2, g3, g4	 � �Kigi�2�1�12Di � Fi

∑
Kjgj

�Kigi�fji

∏
, (2)

where Fi are scaling functions. For the vacuum expecta-
tion value (VEV) of the fields wj for the off-critical theory
finally obtained by taking gi fi 0, gk � 0, k fi i, we have

�wj�i � 2
≠f
≠gj

Ç
gk�0

� Bjig
�Dj�12Di �
i , (3)

where, from (2), Bji � KjK
�Dj�12Di�
i . In a similar manner,

for the generalized susceptibilities we have

Ĝ
i
jl � 2

≠2f
≠gl≠gj

Ç
gk�0

� G
i
jl g

�Dj1Dl21�12Di �
i , (4)

where, from (2), G
i
jl � KjKlK

�Dj1Dl21�12Di �
i . These

quantities are obviously symmetric in the lower indices
(Ĝi

22 and Ĝ
i
11 are, respectively, the usual specific heat

and magnetic susceptibility for the ith deformation of
the critical action). Similarly, for the correlation length

we have ji � a j0 g
2�1�222Di�
i , with j0 � K

2�1�222Di�
i .

From the above formulas, appropriate combinations can
be found where the nonuniversal metric factors Ki cancel.
Some of the 2D universal ratios are
�Rc�i
jk �

G
i
iiG

i
jk

BjiBki
, (5)

�Rx �i
j � Gi

jjB
�Dj21�Dj�
jj B

�122Dj�Dj �
ji , (6)

Ri
j � �Gi

ii�
1�2j0

i , (7)

�RA�i
j � Gi

jj B
�22Dj2Di12�Di �
ii B

�2Dj22�Di �
ij , (8)

�Q2�i
jk �

G
i
jj

G
k
jj

√
j

0
k

j
0
j

!224Dj

. (9)

In this Letter, we consider only the cases i � 1, 2, which
correspond to the most important physical deformations of
the model (the magnetic and the thermal ones), i.e., those
which are most accessible from an experimental point of
view. For both the magnetic and thermal deformations
there is no mixing among the conformal fields due to ultra-
violet renormalization [17,18]. A complete analysis rela-
tive to all deformations of the TIM and the theoretical
details of our approach will be published elsewhere [19].

The e perturbation around the critical TIM is integrable,
and its behavior is governed by the E7 algebra [20]. There-
fore the Bj2’s in Eq. (3) have been computed exactly in
[21]. On the other hand, the s perturbation is noninte-
grable (numerical indications were discussed in [16]). In
this case, the Bj1’s have been numerically evaluated in [22]
by using the truncated conformal space approach (TCSA)
[23]. This method consists in diagonalizing the off-critical
Hamiltonian on a cylinder in a truncated conformal basis
of the critical TIM such that an estimation of �wj�1 can
be obtained from the knowledge of the eigenvectors (only
the ground state eigenvector is needed for the VEV). All
these calculations can be easily performed by means of the
numerical program of Ref. [24].

In order to estimate the universal ratios, it is still neces-
sary to calculate the G

i
jk’s. Their values can be extracted

in two different ways. The first method is purely numeri-
cal and of immediate use, since it consists in employing
the TCSA to compute numerically the derivative ≠

≠gk
�wj�i

(details will be found in [19]). The second method is based
on the fluctuation-dissipation theorem which allows the ex-
pression of the generalized susceptibilities as

Ĝ
i
jk �

Z
d2x �wj�x�wk�c

i , (10)

where �· · ·�c indicates the connected correlator. There-
fore in this second approach we first need to evaluate the
2-point correlation functions and then to compute the in-
tegral. For our calculation of the universal ratios, we have
employed both methods, resulting in an agreement of their
final outputs. Let us briefly discuss the second method.
First of all, express the integral (10) in the polar coor-
dinates as Ĝ

i
jk � 2p

R
dr r �wj�r�wk�c

i . Second, decom-
pose the integral over r into two integrals over the regions
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TABLE I. Amplitude ratios R2
jk �

G
21
jk

G
22
jk

.

R2
11 � 3.54 R2

13 � 22.06
R2

22 � 1 R2
24 � 21

R2
33 � 1.30 R2

44 � 1

0 , r , R and r $ R with R � j. When r , R, the
correlation function �wj�r�wk�0��i can be efficiently evalu-
ated by using a short-distance expansion [17]

�wj�r�wk�0��i �
X

l

Cl
jk�r� �wl�i , (11)

where the nonanalytic dependence on the coupling con-
stant is completely encoded into the VEV’s, whereas the
structure constants Cl

jk�r� can be evaluated perturbatively
in g

Cl
jk�r� � r2�Dl2Dj2Dk�

X̀
n�0

C
l�n�
jk �gir

222Di �n. (12)

For the TIM, the C
l�0�
jk have been computed in [16] whereas

their first correction can be obtained by the formula

C
l�1�
jk � 2

Z 0

d2z �wl�`�wi�z�wk�1�wj�0��CFT , (13)

where the prime indicates a suitable infrared regulariza-
tion of the integral. As shown in [25], an efficient way
to compute the regularized integrals is through a Mellin
transformation. Hence, the calculation of the above inte-
gral (13) on the conformal functions, with the knowledge
of the various expectation values �wl�i , enables us to reach
an accurate approximation of �wj�r�wk�0��i in the ultravio-
let limit, i.e., for r , R. By choosing R � j, one can
obtain an overlap between the ultraviolet and the infrared
representations of the correlation functions. The latter is
expressed by means of the spectral series of the correlators
on the massive states jAk�u�� of the off-critical theory

�wj�x�wk�0��c �
X̀
n�1

gn�r� , (14)

where

gn�r� �
Z du1

2p
· · ·

dun

2p
�0jwj�0�jAa1 �u1� · · · Aan �un��

3 �Aa1 �u1� · · · Aan �un�jwk�0�j0�

3 e2r
Pn

k�1
mk coshuk .

TABLE II. Universal ratios �Rc�1
jk and �Rc�22

jk .

�Rc�1
22 � 1.05 3 1022 �Rc�1

23 � 4.85 3 1022

�Rc�1
24 � 6.7 3 1022 �Rc�1

33 � 3.8 3 1021

�Rc�22
11 � 2.0 3 1023 �Rc�22

14 � 22.34 3 1022

�Rc�22
13 � 1.79 3 1022 �Rc�22

33 � 3.4 3 1021
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TABLE III. Universal ratio �Rx �i
j for i, j � 1, 2.

�Rx �1
1 � 3.897 3 1022 �Rx�21

2 � 0.1111
�Rx �1

2 � 0.116 �Rx�22
1 � 0.040

�Rx �21
1 � 0 �Rx�22

2 � 0.1111

As tested in several examples (e.g., [6,7,17,25,26]), the
above series (14) converges very fast even for r � j so
that its truncation to the lowest terms is able to capture the
correct behavior of the correlator in the interval r $ j.
For the integrable theory defined by the thermal deforma-
tion of the TIM, one can truncate the series to the lowest
2-particle states, with the relative matrix elements com-
puted along the lines of the Refs. [7,17,27,28]. For the
nonintegrable theory defined by the magnetic deformation
of the TIM, it is difficult to go beyond the one-particle ma-
trix elements, and one has to be satisfied with the estimate
of the correlators obtained by the one-particle contributions
only: since this theory has two lowest masses with mass
ratio m2 
 2m1 cosp

5 [16], in this case we have

�wj�r�wk�0��i �
1
p

�f1
j f1

k K0�m1r� 1 f2
j f2

k K0�m2r�	 ,

where K0�x� is the modified Bessel function and
the indices 1, 2 refer to the first and second massive
states. The one-particle matrix elements of this model
fk

j � �0jwj�0�jAk� can be also computed numerically by
using the TCSA [19].

Once an overlap of the short and large distance ex-
pansions of the correlators in the region r � j has been
checked, a numerical integration of the correlators pro-
vides the G

i
jk’s. An explicit test of the validity of the above

method (with a corresponding estimate of its errors) is pro-
vided by the comparison of the values of G

i
ik (obtained by

the numerical integration) with their exact determination
extracted by the D-theorem sum rule, when this theorem
applies [18]:

G
i
ik � 2

Dk

1 2 Dk
Bki . (15)

This check shows that the lowest uncertainties for G
i
jk

is approximately 5%, which, however, improves for the
strongest relevant operators. Gathering all these results,
a set of universal ratios for the TIM have been obtained.
Some of them are exact, like �Rc�1

1,k �
240
5929Dk , �Rc�2

2,k �
10
81Dk (k � 1, . . . , 4). We have also computed those rela-
tive to the low and high temperature phase of the model

TABLE IV. Universal ratios Ri
j and �RA�i

j for i, j � 1, 22, 21.

R1
j � 7.557 3 1022 · · ·

R21
j � 1.0784 3 1021 R22

j � 8.389 3 1021

�RA�1
21 � 0 �RA�1

22 � 3.918 3 1022

�RA�21
1 � 2.958 3 1021 �RA�22

1 � 8.260 3 1021
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TABLE V. Universal ratios �Q2�i
jk for i, j, k � 1, 21, 22.

�Q2�1
211 � 1.260 �Q2�1

221 � 1.884
�Q2�1

2121 � 1.973 �Q2�1
2122 � 1.320

�Q2�21

11 � 1.56 �Q2�22
11 � 0.442

�Q2�21
122 � 1.70 · · ·

(Table I), denoted by an upper index 7, respectively. An
interesting universal ratio is provided in this case by the
correlation lengths j6, measured at the same displacement
above and below the critical temperature (as extracted from
the correlation function of the magnetic operator using its
duality properties)

j1

j2
� 2 cos

µ
5p

18

∂
� 1.285 57 . . . , (16)

which can be inferred by the exact mass spectrum of the
model and the parity properties of the excitations [16,20].
Other universal ratios are presented in Tables II–V.

In summary, we have combined techniques coming from
CFT, integrable models, and numerical methods to obtain
for the first time a set of universal quantities for the class
of universality of the 2D tricritical Ising model. It would
be interesting to have an experimental determination of
these quantities and a comparison with the theoretical pre-
dictions presented here. It would be equally interesting
to have an independent determination of the universal ra-
tios by using a lattice version of the model, as those of
Refs. [29,30] or the one recently discussed in [31].
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