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Coherent Rayleigh Scattering
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The spectrum of coherent scattering induced by electrostriction in gases has been analyzed in the
previously unexplored, free-molecule limit by solving Boltzmann’s equation with a periodic force due
to the optical fields. Calculated and measured spectra of several gases at rarefied conditions are nearly
Gaussian with widths approximately 10% wider than the spontaneous Rayleigh widths. Our results are
the first spectrally resolved measurements of coherent Rayleigh scattering in the free-molecule limit,
where the hydrodynamic analysis of stimulated Rayleigh-Brillouin scattering does not apply.
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Stimulated Rayleigh and Brillouin scattering, two non-
resonant, nonlinear optical effects in gases and liquids in-
duced by electrostriction, have been extensively studied for
conditions in which the fluid can be described as a con-
tinuum. The density perturbation that occurs in response
to the optical fields takes the forms of traveling acoustic
waves (Brillouin scattering) and stationary isobaric den-
sity fluctuations (Rayleigh scattering). In the frequency
domain, the spectral distribution and gain dynamics of
these nonlinear processes have been analyzed using the lin-
earized equations of hydrodynamics and the coupled-wave
theory of nonlinear optics [1]. For rarefied gases, however,
the mean-free path may be comparable to the length scale
of the electrostrictive force gradients. The response of the
gas to the driving force, and the spectrum of stimulated
scattering, cannot adequately be described with the hydro-
dynamic solution.

In this Letter we analyze stimulated scattering at gas
densities sufficiently low that microscopic motion must be
considered. The polarization-decoupled, nearly degenerate
four-wave mixing configuration of our experiment permits
the spectrum of Bragg-diffracted light to be measured inde-
pendently of the optical fields that induce the perturbation.
The configuration is similar to the Brillouin-enhanced
four-wave mixing process used for amplified phase conju-
gation [2]. In the low-density regime of the present experi-
ment, the density perturbation results from a distortion of
the local velocity distribution sustained by the traveling-
wave electrostrictive force. This variation of nonresonant
four-wave mixing is the coherent analog of spontaneous
Rayleigh scattering at rarefied conditions because the
width of the four-wave mixing spectral profile is in direct
proportion to the width to the microscopic velocity distri-
bution. However, the coherence of the optically induced
density perturbation leads to a spectral distribution distinct
from that of spontaneous Rayleigh scattering, which arises
from statistically correlated microscopic density fluctu-
ations. Stimulated Rayleigh-Brillouin gain spectroscopy
in gases has been reported [3], but an analysis of the
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coherent nature of the electrostrictive force interaction
was neglected. Here we show that the optically induced
density perturbation in the free-molecule limit can be
characterized from a solution to Boltzmann’s equation
with a traveling-wave electrostrictive force as the driving
term, and that spectra of coherent scattering computed
with this solution show excellent agreement with mea-
sured spectra of several gases at rarefied conditions.

The coherent Rayleigh scattering process is shown
schematically in Fig. 1. The two pump waves, E1 and
E2, create a density perturbation due to the electrostrictive
force acting on the molecules, and the probe wave E3
Bragg diffracts off the perturbation to generate the signal
wave E4. The density perturbation Dr̃ induced by the two
pump beams is a traveling wave that oscillates at the beat
frequency of the pump waves, V � v1 2 v2, with grat-
ing wave vector q � k1 2 k2. Phase matching requires
that the signal beam have frequency v4 � v3 2 V and
wave number k4 � k3 2 q. Following Boyd [1], tildes
denote time-varying quantities, and their absence indicates
amplitude.

The electric field of the interfering pump waves gener-
ates a periodic force normal to the wave fronts which acts
on the molecules through an induced dipole moment. Ig-
noring the tensor nature of the polarizability a, the force
per molecule at the beat frequency of the two pump beams
is given by [4]

FIG. 1. Coherent Rayleigh scattering. The two pump waves
create a traveling-wave density perturbation, and the phase-
matched probe wave scatters off this perturbation to create the
signal wave. The pump beams are orthogonally polarized to the
probe and signal beams.
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�Ẽ1 1 Ẽ2�2 � 2aqjA1A2j sin�qx 2 Vt� ,

(1)

where q � jqj, A1 and A2 are the electric field amplitudes
of the pump waves, and the direction x is parallel to the
vector q. An arbitrary phase factor has been neglected.
It is assumed that amplitudes and phases of the pump
waves remain constant through the interaction region. For
a nonzero V, the periodic force becomes a traveling wave
with velocity V�q. The periodic force imparts an accel-
eration to the molecules which distorts the x component
of the local velocity distribution. The non-equilibrium
velocity distribution leads to a spatially periodic density
perturbation due to transport. In the hydrodynamic limit,
the velocity distortion relaxes in a time short compared to
the laser pulse duration, thus restricting individual particle
displacement but causing bulk compression and rarefac-
tion of the fluid. The usual conservation equations for
mass, momentum, and energy adequately describe the dy-
namic response of the density perturbation under steady-
state [1] and transient conditions [5]. In the free-molecule
limit, however, the absence of equilibrating collisions pre-
cludes the transport of momentum and energy through vis-
cous shear and heat conduction, respectively. The induced
changes in particle trajectories from free flight result in
a nonzero flux of particles through planes normal to the
grating vector which, in turn, perturbs the local density.
By simply accounting for particle motion statistically with
a velocity distribution function, the density perturbation
along the grating can be quantified.

The local velocity distribution can be considered to be
a small departure f 0 from the equilibrium distribution f0
under the influence of the induced force. As the force acts
only on the x component of the velocity y, we assume
that the velocity perturbation of the transverse components,
which would arise only from direction-changing collisions
with the nonequilibrium y distribution, can be neglected
relative to the perturbation in y. The problem can then
be reduced to one dimension, i.e., f 0 � f 0�x, y, t�. The
evolution of f 0 can be described by a one-dimensional
Boltzmann equation:
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Here m is the molecular mass, f0 is the normalized
one-dimensional Maxwell distribution function, and
�df�dt�coll is the collision integral. If ajA1A2j ø kBT ,
where kB is Boltzmann’s constant and T is the gas
temperature, the perturbation in the particle velocity due
to the electrostrictive force is small relative to the average
thermal velocity. This implies that f 0 is small relative
to f0 and that, to first order, ≠f 0�≠y may be neglected
relative to ≠f0�≠y. As we are interested in the response
at sufficiently low densities where the time between
collisions is long compared to the pump pulse duration,
the collision integral of Eq. (2) can be set to zero, yielding
the collisionless Boltzmann, or Vlasov, equation. With
these assumptions, Eq. (2) can be solved as an initial value
problem with a zero initial condition, f 0�x, y, 0� � 0:

f 0�x, y, t� �
ajA1A2j

kBT
f0�y,

q
2kBT�m�

3
qy�cos�qx 2 Vt� 2 cos�qx 2 qyt��

qy 2 V
.

(3)

The perturbation is linear in the amplitude of the forcing
term and has a resonance at V � qy, at which the travel-
ing wave velocity matches the particle velocity. Particles
moving with velocities at or near that of the traveling wave
experience a force that is constant in phase, while particles
moving at velocities different than the traveling wave are
subject to a force that oscillates in direction.

The density perturbation is computed as Dr̃�r0 �R
`
2` f 0 dy, where r0 is the equilibrium density. Integra-

tion of Eq. (3) over y is not possible in closed form, but
the result can be written as

Dr̃

r0
�

ajA1A2j

kBT
�g�V�s�ei�qx2Vt� 1 c.c.� . (4)

The dependence of the perturbation amplitude on the
traveling-wave velocity resides in g, a dimensionless
complex-valued function of V normalized by a width
parameter s � q

p
2kBT�m. The function f 0 remains

oscillatory in y with a frequency that increases with t,
but the amplitude of its integral (i.e., g) asymptotes to a
constant at t � p�s, which is approximately one-half the
transit time across a fringe distance for particles moving
with the most probable velocity. This time is the induction
time of the electrostrictive perturbation and is fast com-
pared to the laser pulse duration but slow compared to the
induction time of Raman or electronic nonlinearities.

The electric-field amplitude A4 of the four-wave mix-
ing signal can be determined from the coupled-wave the-
ory of nonlinear optics under the slowly varying envelope
approximation [1] with the change in susceptibility being
proportional to Dr̃. The steady-state intensity of the sig-
nal I4 ~ A4A�

4 in the small-signal limit over an interaction
length L is

I4 ~ �a2Lv4N�kBT �2jg�V�s�j2I1I2I3 , (5)

where N is the particle number density and the Ii are the
intensities of the three input beams.

The spectrum of the coherent signal is proportional to
jgj2 and, from numerical integration of Eq. (3), was found
to be nearly Gaussian with a width approximately 10%
wider than the Gaussian spectrum of spontaneous Rayleigh
scattering. The slight departure from Gaussian behavior
occurs in the wings (high traveling-wave velocities), where
the value of the equilibrium distribution becomes negli-
gible. The significant contribution to the integral of f 0
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in this non-Gaussian region arises from velocity groups
near the center of the distribution, far from the traveling-
wave velocity. The important result of the analysis is that,
for a fixed scattering geometry, the width of the intensity
spectrum depends on

p
T�m, which is identical to that of

spontaneous Rayleigh scattering. However, the coherent
spectral profile is unambiguously different owing to the
interaction of the traveling-wave force with the entire ve-
locity distribution at all points along the grating.

An experiment was designed to measure the spectral
profile of the coherent Rayleigh scattering signal with suf-
ficient resolution for comparison with theory. The re-
quired range of frequency detuning �V� between the pump
beams was achieved through the use of a single broad band
pump source. Interference between the two pump beams
produces simultaneously all values of V within the laser
bandwidth. A narrow band probe laser samples all the den-
sity gratings produced by the pump beams, and the signal
consists of all phased-matched frequencies the four-wave
mixing process can support. The frequency spectrum was
resolved using an etalon and was recorded by monitoring
the transmission of the signal beam as the probe laser fre-
quency was scanned.

Two frequency-doubled, pulsed Nd:YAG lasers were
used in this experiment. The pump and probe lasers were
multimode and injection seeded, respectively. The cw
injection-seed laser for the pulsed probe laser host
could be temperature tuned in the fundamental �1.06 mm�
over approximately 9 GHz with an external voltage
ramp. A small portion of the seed laser was directed
through a 250 MHz confocal reference cavity, which
was locked to a frequency-stabilized HeNe laser. As the
seed laser was scanned transmission through this reference
cavity was used to monitor the scanning linearity and
provide an accurate frequency calibration of the measured
spectra.

The unseeded pump laser beam was split with a 50-
50 beam splitter, and the two beams were crossed in a
gas cell at an approximately 178± angle. The propagation
distances from the beam splitter to the crossing point were
matched to within a few mm. The pump laser bandwidth
was approximately 40 GHz, and the distribution of V was
estimated to be uniform within 5% over 67 GHz. Both
pump beams were polarized normal to the plane defined
by their intersection. The probe beam was orthogonally
polarized to that of the pumps and was counterpropagated
against one of the pump beams (Fig. 1). All beams were
focused to a diameter of approximately 100 mm, and the
beam waists were coincident at the crossing point. The
interaction length �L� was estimated at 1.5 cm based on
the diameter and crossing angle of the beams. The two
laser pulses (7 ns FWHM) were coincident in time with
an estimated jitter of less than 2 ns. The generated four-
wave mixing signal, which has the same polarization as
the probe, counterpropagates against the other pump beam.
After passing through the pump beam focusing lens, the
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signal was coupled out through a thin-film polarizer and
directed to the detection system approximately 7 m away.

The etalon used to characterize the spectrum was a
temperature-stabilized 5 mm quartz flat (free spectral
range 20 GHz) with a finesse of approximately 75. A por-
tion of the probe beam was used to align the etalon and
measure its transmission profile. The signal beam was
then coupled on to this reference beam path with a polar-
izing beam splitter. Using appropriate beam splitters, four
separate paths comprising both incident and transmitted
reference and signal beams were created. The reference-
beam intensities were measured with photodiodes, while
the signal beams were measured with photomultiplier
tubes. The transmission spectra of the reference and signal
were normalized on a per-shot basis. Typically 50 pulses
were averaged for each seed-laser frequency step. Drift
of the etalon resonance relative to the calibrated probe
laser frequency was assessed to be negligible from several
consecutive weeks of use.

Shown in Fig. 2 is the measured transmission profile of
the coherent Rayleigh scattering signal from N2 at 298 K
and 6.6 kPa (50 torr). The pulse energy of each of the in-
put beams was approximately 15 mJ. No signal could be
detected without the presence of all three input beams, in-
dicating that the coherent signal at this pressure is at least
an order of magnitude stronger than the spontaneous sig-
nal for the same geometrical collection efficiency � f�30�.
Also plotted in Fig. 2 is the transmission profile of the nar-
row band probe laser, which defined the resolution of the
measurement. The mean-free path l at this temperature
and pressure is 1.3 mm assuming a hard-sphere collision
diameter derived from the viscosity, which yields a Knud-
sen number (Kn � lq�2p , ratio of mean-free path to

FIG. 2. Frequency spectrum of coherent Rayleigh scattering
from N2 at 6.6 kPa (50 torr) and 298 K. Instrument function is
the transmission spectrum of the narrow band probe laser. The
solid line is a curve fit of a numerical model to the data. The
curve fit residual is shown below.
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fringe spacing) of approximately 5. The tabulated average
polarizability for N2 [6] and the pump-pulse energies vali-
date the small perturbation assumption: ajA1A2j�kBT �
1024. A curve fit of jg�V�s�j2 to the spectrum was per-
formed and is plotted with the data. The curve-fit residual
is shown below. Rather than attempt to deconvolve the
instrument function from the data prior to curve fitting,
jg�V�s�j2 was convolved with an analytic approximation
to the instrument function as part of the fitting procedure.
The width parameter s obtained from the curve fit agrees
within 1% of the expected value based upon our q and
T . The signal-to-noise ratio of the data in the wings, how-
ever, was insufficient to resolve the predicted non-Gaussian
behavior. (For the pressure at which the spectrum was
recorded, the mean time between collisions was approxi-
mately 6 ns, which is slightly shorter than the full widths
of the laser pulses. Although some collisions will have
occurred during the pulse, their frequency is sufficiently
small as to not grossly invalidate the collisionless assump-
tion.) The agreement between the calculation for the free-
molecule limit �Kn ¿ 1� and the data is excellent. In
the fully hydrodynamic limit, Kn ø 1 (i.e., liquids), the
spectrum would exhibit Brillouin-shifted peaks due to the
excited acoustic modes. The unshifted Rayleigh compo-
nent would be homogeneously broadened, owing to the
collective effects of collisions, with a width proportional
to the thermal diffusion rate [1]. In the transition regime,
which applies to gas densities for which Kn # 3, the spec-
trum would exhibit both hydrodynamic and free-molecule
behavior.

The fidelity of the calculation was further explored by
measuring the coherent Rayleigh scattering spectra of CH4,
CO2, and SO2 at 298 K. The gas pressures were also
6.6 kPa with the exception of SO2, which was 3.3 kPa
(25 torr). At these conditions the Knudsen numbers and
collision times were similar to that of N2. The averages of
s for each gas obtained from curve fits to several spectra
are plotted in Fig. 3 as a function of molecular mass. The
error bar for CH4 denotes the expanded uncertainty with
coverage factor k � 2 (i.e., 2 standard deviations); uncer-
tainties for the other points are less than 1.7% and could
not be shown legibly. The curve in Fig. 3 corresponds to
the expected value of s as a function of molecular mass
for our q and T . The agreement between the expected and
measured widths for the three other gases is also excellent,
confirming the predicted result that the coherent Rayleigh
scattering spectrum is parametrized only by s.

We have presented a microscopic theory of coherent
Rayleigh scattering induced by electrostriction in the
free-molecule limit. This is in contrast to the previously
documented analysis of stimulated Rayleigh-Brillouin
scattering in the hydrodynamic limit, where the fluid is
considered a continuum. The dynamic response of the
optically induced density perturbation was character-
ized with a solution of a one-dimensional collisionless
FIG. 3. Average of width parameter s � q
p

2kBT�m deter-
mined from curve fits to measured coherent Rayleigh scattering
spectra of CH4, N2, CO2, and SO2 at 298 K as a function of
molecular mass. The error bar for CH4 denotes the expanded
uncertainty with coverage factor k � 2 (i.e., 2 standard devia-
tions); uncertainties for the other points are less than 1.7%. The
curve corresponds to the predicted value of s for the experimen-
tal values of q and T .

Boltzmann equation in which the driving term is due to
the traveling-wave electrostrictive force. The spectrum
of Bragg-diffracted light is approximately Gaussian, in
contrast to the Lorentzian profile predicted in the hydro-
dynamic limit. Excellent agreement between predicted
and measured coherent Rayleigh scattering spectra was
found for several gases under rarefied conditions. The
technique provides a tremendous increase in sensitivity
over spontaneous Rayleigh scattering while conveying the
same information about the medium. Possible applications
include validation of kinetic models of gases and gas
mixtures, and translational temperature measurements in
low to moderate density neutral and weakly ionized gases.
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