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Physical Limits on Electronic Nonlinear Molecular Susceptibilities
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We apply sum rules to answer the question: What is the largest off-resonance electronic nonlinear
susceptibility allowed by quantum mechanics? The sum-rule-restricted three-level model shows that the
two-level limit yields the absolute maximum susceptibility, which is found to depend only on the first
excited state transition energy and number of electrons—in agreement with a large set of second- and
third-order susceptibility data from the literature. As such, the sum rules provide a target for the maxi-
mum possible off-resonant susceptibilities.

PACS numbers: 42.65.An, 33.15.Kr, 33.55.–b
Many studies have focused on understanding the origin
of the nonlinear susceptibilities of molecules with the hope
of making better materials for photonics applications.
These include two and three state models that consider the
competition between transitions [1–4], symmetry models
[5], and bond length alternation [6]. This paper, in
contrast, asks the question: What is the largest diagonal
tensor component of the nonlinear succeptibility that is
allowed by quantum mechanics? The answer entails ap-
plying sum rules to quantum calculations of the electronic
nonlinear susceptibility. Our calculation, when compared
with a large collection of experimental data from the
literature [7], accurately predicts the upper limit. The sum
rules, while general and applicable to any nonlinearity,
are applied here to the diagonal tensor component of the
off-resonant electronic nonlinear susceptibilities.

We begin with the Thomas-Kuhn sum rules, which
are derived for an N-particle system by evaluating the
matrix elements of the commutators �mj ��� �H,

PN
i�1 xi�,PN

j�1 xj��� jp� [8], where xi is the position of the iTH

particle. This yields
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where xab is the matrix element of the position between
states a and b, Ea the energy of state a, m the mass of the
particle (in our case, the electron), and N the number of
particles in the system (here, a molecule). This sum rule
applies to any molecule in which the force on the electrons
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is conservative. The sum, indexed by n, is over all states
of the system.

Let us consider the case where m and p in Eq. (1) are
both the ground state, 0. Solving for x10, we get
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where Enm � En 2 Em. Because each of the three terms
in Eq. (2) is positive definite, the transition moment to the
first excited state is maximum for a two-level model, that
is, when xn0 � 0 for n fi 1. The two-level model does
not imply, however, that there are no transitions between
excited states, but rather that all transition moments from
the ground state to any excited state vanish except for the
first excited state. It is interesting to ask whether this sum-
rule limit on the oscillator strengths yields a limit on the
maximum nonlinear-optical susceptibilities.

Because of the importance of low loss and ultrafast
response in many applications, we evaluate the off-
resonance susceptibilities [such as the hyperpolarizability,
bi,j,k�2v1 2 v2; v1, v2�, with h̄v1, h̄v2 ø En0 for any
excited state n]. This approximation allows us to ignore
the transition width, resulting in real b. Generalizing
these calculations to near resonant conditions is a straight-
forward procedure that may lead to interesting results,
but is not treated here. Secondly, we consider only the
diagonal component of the nonlinear susceptibilities. We
stress that these results hold for the diagonal components
of susceptibilities for three-dimensional molecules.

The general expression for b is given by an infinite sum
over the excited states [9],
bijk � KI1,2
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where K is a degeneracy factor that depends on the wave-
lengths of the light beams, I1,2 is the permutation operator,
and r̄nm � �r 2 r00�nm. Most models used to understand
the conditions leading to a maximum of Eq. (3) assume
that the transition moments, such as erj

mg, and transition
energies, such as h̄Vng, are parameters that can be inde-
pendently varied. These models calculate the moments
and energies as functions of some variable, j, that is in-
tuitively understood, such as symmetry [5] or bond length
alternation [6], and determine which values of these pa-
rameters maximize the nonlinear response. Molecules can
then be made according to this paradigm, and tested for
their response. While this approach provides a method for
designing new molecules, it leaves several questions unan-
swered. For example, if the nonlinearity of a molecule is
© 2000 The American Physical Society
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maximum for a given parameter j, is that the maximum
possible? Does this value of the parameter violate quan-
tum mechanics? The purpose of this paper is to investigate
the limits imposed by quantum mechanics, independent of
the approach.

The maximum possible response can be determined us-
ing the sum rules. We begin by evaluating Eq. (3) using
the three-level sum rule and evaluating the two-level limit.
For a three-level model, the off-resonant hyperpolarizabil-
ity is
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where we have assumed En0 is real for all n and that the op-
erator x is Hermitian so that xij � x�

ji . Note that b is real.
The first and third terms correspond to a two-level model
to the first excited state and the second excited state, re-
spectively. These two terms require a change in the dipole
moment, and are therefore referred to as dipolar terms. The
middle term, on the other hand, does not require a change
in the dipole moment and includes transition moments be-
tween all three states. As such, it is called the octupole
term [10].

We now evaluate the sum rules that include the first three
states. �m, p� � �0, 0� yields
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. (5)
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�m, p� � �0, 1� yields

x01Dx10E10 1 x02x21�E21 1 E20� � 0 , (7)

where Dx10 � x11 2 x00. �m, p� � �0, 2� yields

x02Dx20E20 1 x01x12�E10 2 E21� � 0 , (8)

where Dx20 � x22 2 x00. Note that the sum rules for
�m, p� yield the same expression as for �p, m� with xi,j !
xj,i .

We can solve Eqs. (5)–(8) (along with the associated
equations with xi,j ! xj,i) for each matrix element in
terms of x01, which yields
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where jx2L
01 j

2 � h̄2N�2mE10 is the maximum possible
value of the position matrix element given by Eq. (2) and
E � E10�E20. Multiplying Eq. (8) by x20 yields

x01x12x20 � jx02j
2Dx20��1 2 2E� . (13)

Equations (9)–(13) can be substituted into Eq. (4) to
evaluate the second-order susceptibility.

We begin by considering the two-level model, which
is calculated from Eq. (4) with E20 ! `, or, equivalently,
E ! 0. Using Eq. (11), this yields
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where b
SR
2L is the sum-rule-restricted two-level b. Equa-

tion (14) vanishes when x01 � 0 and at jx01j � jx2L
01 j, and

is maximum when jx01j
4 � 1

3 jx
2L
01 j

4. Using the Lorentz
local field model, the maximum two-level dressed suscep-
tibility given by Eq. (14) is
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Figure 1 shows b0�N3�2 as a function of wavelength of
maximum absorbance of the first excited state for experi-
mentally measured values of a large number of molecules
as tabulated in the literature (points) [7], and the theory,
given by Eq. (15). The number of electrons participating,
N , is determined by twice the number of double (or triple)
bonds in the molecule, an estimate that has been shown to
be good for conjugated systems [11]. Because of the large
number of molecules represented, it is not possible to pro-
vide figures for the molecular structures associated with

FIG. 1. b0�N3�2 as a function of wavelength of maximum
absorbance of the first excited state for the sum-rule theory
(upper curve) and experimentally measured values using EFISH
(points).
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the data points. Readers are referred to the tabulations for
more information [7]. It is intriguing that the sum-rule-
restricted two-level model gives an upper bound.

We can prove that adding another state to the system
leads to a decrease in b. To do so, we consider the three-
level model. Substituting Eqs. (9)–(13) into Eq. (3) yields
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where the plus (minus) sign in Eq. (16) is used when Dx10
is positive (negative). For a fixed value of E, the three-level
model is maximized when x4

01 � 1
3 �x2L

01 �4, as we found for
the two-level model. Interestingly, b vanishes when the
two excited states become degenerate. Figure 2 shows a
plot of each term in f�E� (i.e., two-level term, octupole
term and two-level term for the second state) as a func-
tion of E. f�0� � 2 is the two-level model result. f�E�
monotonically decreases with E and limE!1 ��� f�E���� � 0,
so the two-level model yields the maximum value. It is
clear that adding a third state decreases b, so molecules
with closely spaced excited states will never result in the
largest response.

While the two-level model yields maximum b0, larger
diagonal components of b are possible only nearer to
resonances. Another fruitful approach may be to study
off-diagonal components of b, such as those that are im-
portant in octupolar molecules. Indeed, there is experimen-
tal evidence that the octupolar molecules, as measured with
harmonic light scattering [12] [electric field induced sec-
ond harmonic generation (EFISH) cannot measure only the

FIG. 2. f�E� as a function of E and its associated two-level
terms and octupolar terms.
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octupolar part [10] ], may have larger second-order suscep-
tibilities through “octupoling” alignment [13]. This more
general case will be presented later [14].

The same analysis leading to Eq. (15) can be used to
calculate the absolute maximum diagonal component of
the second hyperpolarizability, g, and yields [15]
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where the negative limit is for a centrosymmetric mole-
cule and the positive limit for an asymmetric molecule.
Figure 3 shows experimental values of g0 [16] of several
series of molecules as shown in Fig. 4. The theory, again,
correctly predicts the upper bound. A larger set of data
comparisons will be presented elsewhere [14].

Given these results, we can speculate on the largest
achievable susceptibilities. Considering a 50 p-electron
molecule such as a donor-acceptor version of sexithienyl,
with lmax � 800 nm and one dominant state, it would
yield a dressed hyperpolarizability of b

�
0 � 8400 3

10230 esu. These same parameters give g
�
0 � 350 000 3

10236 esu. These are larger than molecules that are
typically measured to have a “large” response, such
as g

�
0 � 7500 3 10236 esu [17] to g

�
0 � 10 000 3

10236 esu [16]. There are clearly more complex issues
that determine how b and g scale with the length and
number of electrons. Nevertheless, the sum rules provide
an upper bound as a target.

The sum rules can be applied to many other cases, such
as b and g near resonance, problems that go beyond the
dipole approximation (as is used to calculate the sum-over-
state expressions), device figure of merits, and other non-
linear mechanisms such as photorefraction and molecular
reorientation. For example, consider the third-order sus-
ceptibility that describes all-optical molecular reorienta-
tion, which is of the form aa2�kT where a # 1 is a
Kirkwood factor with a � 1 for a noninteracting gas and

FIG. 3. Measured g0�N2 as a function of lmax for several
molecules, and, the sum-rule theoretical upper limit.
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FIG. 4. Chromophores measured in Fig. 3.

a the linear susceptibility. The maximum value of a can
be determined using the sum rules, yielding a ratio between
electronic and reorientational g of gel�greo 	 kT�E10.
Given that, at room temperature, kT , E10, the reorienta-
tional effect can be larger than electronic, but much slower
in response. Clearly, the sum rules provide a powerful
approach for the study of the limits on nonlinear optical
mechanisms.

In summary, we have applied quantum sum rules to
calculate the absolute maximum values of off-resonant
electronic b and g allowed by nature. We find that the
three-level model yields the absolute maximum response
in the two-level limit and is consistent with observations
for all molecules measured with EFISH for b and several
sets of measurements for g. The present paradigms used to
design new molecules have resulted in structures whose b0
and g0 approach the theoretical limit for a given value of
N and lmax. The only avenue available to increase the off-
resonant hyperpolarizability is to make molecules with one
dominant state, redshifted lmax, and as many electrons as
possible. Perhaps more importantly, the sum rules provide
a broader framework that goes beyond the cases that we
treat here, in which basic issues can be addressed by con-
sidering the relationships between fundamental properties.
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