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In mixed systems, besides regular and chaotic states, there are states supported by the chaotic region
mainly living in the vicinity of the hierarchy of regular islands. We show that the fraction of these
hierarchical states scales as h̄a and we relate the exponent a � 1 2 1�g to the decay of the classical
staying probability P�t� � t2g . This is numerically confirmed for the kicked rotor by studying the
influence of hierarchical states on eigenfunction and level statistics.
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Typical Hamiltonian systems are neither integrable nor
ergodic [1] but have a mixed phase space, where regular
and chaotic regions coexist. The regular regions are orga-
nized in a hierarchical way [2] (see, e.g., Fig. 2a below)
and chaotic dynamics is clearly distinct from the dynamics
of fully chaotic systems. In particular, chaotic trajectories
are trapped in the vicinity of the hierarchy of regular is-
lands. The most prominent quantity reflecting this is the
probability P�t� to be trapped longer than a time t, which
decays as [3]

P�t� � t2g , g . 1 , (1)

in contrast to the typical exponential decay in fully chaotic
systems. While the power-law decay is universal, the ex-
ponent g is system and parameter dependent. The ori-
gins of the algebraic decay are partial transport barriers
[4], e.g., Cantori, leading to a hierarchical structure of the
chaotic region [5]. Quantum mechanically, the classical
algebraic decay of P�t� is mimicked at most until Heisen-
berg time [6].

Even after two decades of studying quantum chaos, the
search for quantum signatures of this universal power-
law trapping is still in its infancy: In fact, only conduc-
tance fluctuations of open systems have been investigated
so far. It was semiclassically derived that these fluctua-
tions should have a fractal dimension D � 2 2 g�2 [7],
which was confirmed in gold nanowires [8], semiconduc-
tor nanostructures [9], and numerics [10]. Quite recently,
a second type of conductance fluctuations in mixed sys-
tems has been discovered numerically [11,12], namely, iso-
lated resonances. There the classical exponent g seems
to appear in the scaling of the variance of conductance
increments, surprisingly, on scales below the mean level
spacing, which is not understood so far. Thus, even for
this subject there is a lack of basic understanding.

In this paper we present consequences of the classical
P�t� � t2g in closed quantum systems, namely, the ap-
pearance of a new class of eigenstates (Fig. 1). Different
from the well-studied regular and chaotic states, they are
supported by the chaotic region, but live predominantly in
the vicinity of the regular islands [13]. As for decreasing
h̄, they move deeper into the hierarchical structure of the
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chaotic region, we like to call them hierarchical states. We
show that the fraction fhier of such states scales as

fhier � h̄121�g , (2)

which is confirmed numerically for the kicked rotor by
studying the influence of hierarchical states on eigenfunc-
tion and level statistics. We deduce relation (2) by combin-
ing the finite resolution of quantum mechanics for a given
h̄ with the simplest model [4] describing classical transport
in a mixed phase space. We are encouraged by the success
of this approach, and think that it will help in understand-
ing the quantum signatures of a mixed phase space.

We motivate and numerically verify our results using
the well-known kicked rotor, which is a paradigm for a
generic Hamiltonian system [14] and has a time evolution

FIG. 1 (color). Husimi representation of a regular, hierarchi-
cal, and chaotic eigenstate of the kicked rotor �K � 2.5, h̄ �
2p�1000� with solid lines showing KAM tori of the classical
phase space. The lower part shows the distribution p�h�, where
h is the density of an eigenstate averaged over the green shaded
area (corresponding to 25% of sites in q representation). The
mean of the Gaussian fit determines 1�fch, which is clearly dis-
tinct from 1�rch.
© 2000 The American Physical Society
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described by the map:

qn11 � qn 1 pn,

pn11 � pn 1 K sinqn11 .
(3)

Its quantum properties are determined by the time evolu-
tion operator for one period [15,16],
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Figure 2a (below) shows a typical classical phase space,
which is governed by one big chaotic invariant set with
fractional phase space volume rch and islands of regular
motion of total fraction rreg [17] arranged in a hierarchi-
cal way. Quantum mechanically, however, we find three
types of eigenstates of U (Fig. 1): There are “regular”
states living on Kolmogorov-Arnol’d-Moser (KAM) tori of
the regular islands and there are “chaotic” states extending
uniformly across the chaotic region as first described by
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FIG. 2. (a) Successive magnifications of the phase space
hierarchy of the kicked rotor �K � 2.5�. (b) The fraction of
hierarchical states fhier as a function of 1�h̄ for K � 3.6,
2.5, and 1.8 as determined from eigenfunction (dots) and level
statistics (diamonds). The solid lines show the predicted
power laws according to Eq. (2) and (c). Data for K � 1.8
are extracted from Table 2 in Ref. [21]. (c) Classical staying
probability P�t� � t2g providing the values of g used in (b).
The reason for the different fitting range for K � 1.8 is the
longer-lasting initial exponential decay.
Percival [18]. In addition, there are eigenstates supported
by the chaotic region that are of a third type. They pre-
dominantly live in the vicinity of the regular islands with
only a small contribution in the main part of the chaotic
sea. These states are separated from the main chaotic sea
by partial barriers of the classical phase space, e.g., Can-
tori or stable and unstable manifolds [5]. For decreasing h̄
these states live deeper in the hierarchy of classical phase
space and thus we like to call them hierarchical states. De-
noting the fraction of the three types of states by freg, fch,
and fhier , respectively, one has

freg 1 fch 1 fhier � 1 � rreg 1 rch . (5)

Obviously for any given h̄ not all regular islands are re-
solved and therefore freg�h̄� , rreg holds. We determined
the island volumes, revealing that the h̄ dependence of freg
is negligible compared to the h̄ dependence of fhier and
fch. We thus use freg � rreg in the following and Eq. (5)
reduces to

fch 1 fhier � rch . (6)

We want to focus on the fraction fhier of hierarchical states,
which we now determine from their influence on eigen-
function and level statistics.

As a first quantity we determine h, the density of an
eigenstate averaged over a large area in the chaotic region,
far away from the islands. As long as this averaging area
is large compared to h̄, its specific choice and the used
representation (e.g., Husimi) does not affect the follow-
ing analysis. Normalization for h is chosen such that an
eigenstate uniformly covering the entire phase space would
give h � 1. The distribution of h (Fig. 1) shows a peak
for small h stemming from the regular states, intermediate
values from hierarchical states, and a Gaussian-like peak
that we ascribe to the chaotic states. Assuming that the
fraction fch of chaotic states extends on average uniformly
(neglecting scar effects [19]) across a fraction fch # rch
of phase space, we fit a Gaussian with normalization fch
and mean 1�fch to the latter part of the h distribution.
We find that the mean 1�fch is clearly distinct from 1�rch
(Fig. 1), the value one would obtain if there were eigen-
states uniformly covering the entire chaotic region. The fit
determines the fraction fhier � rch 2 fch of hierarchical
eigenstates, which is shown as a function of h̄ in Fig. 2b.

We now want to quantify the influence of hierarchical
states on level statistics for mixed systems. To this end
we extend the approach of Berry and Robnik [20], which
assumes a random superposition of a regular (Poissonian)
spectrum with measure rBR and a chaotic (GOE) spectrum
with measure 1 2 rBR: We take into account the hierar-
chical states and their spectrum. As most of them couple
weakly to regular as well as chaotic states, we assume that
their spectrum is superimposed independently to the rest
of the spectrum. Typically, fhier is smaller than fch 1

freg and therefore to first order these levels are randomly
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placed in the spectrum. Thus, one can effectively use the
original Berry-Robnik approach, but one has to interpret
the parameter rBR as the sum of regular and hierarchical
fraction of states, rBR � freg 1 fhier . We determine rBR
by fitting the nearest-neighbor level-spacing distribution,
using the cumulative distribution as well as the so-called
U function [21]. The obtained values of fhier from both
fitting procedures agree within the error bars, and their av-
erage as a function of h̄ is shown in Fig. 2b.

The two methods for determining fhier , eigenfunction
and level statistics, rely on several assumptions, and one
may not expect identical absolute values. Both methods,
however, show a clear power-law decay according to rela-
tion (2) for the fraction of hierarchical eigenstates as can
be seen in Fig. 2b for three values of the kicking strength
K , where g is extracted from the decay of the correspond-
ing P�t� shown in Fig. 2c.

We now want to derive Eq. (2). Let us recall that
the classical power-law trapping P�t� � t2g originates
from partial transport barriers, e.g., Cantori, arranged
in a hierarchical way in the chaotic part of phase space
around islands of regular motion [5]. The simplest model
[4] yielding P�t� � t2g describes this hierarchy of the
chaotic sea as a chain of volumes Vn � vn �v , 1, n �
0, 1, . . .� connected by a flux Fn,n11 � wn �w , v�, as
shown in Fig. 3a. Then g � 1��1 2 lnv� lnw� holds [4].
Quantum mechanically, the two neighboring volumes n
and n 1 1 are strongly coupled, as long as Fn,n11 . h̄,
while they are weakly coupled in the opposite case [22].
This determines a critical flux Fn�,n�11 � h̄ with n� �
lnh̄� lnw. The volumes Vn with n , n� correspond to the
main part of the chaotic sea and support the chaotic eigen-
states. Regions with n . n� correspond to the hierarchical
part of the chaotic sea supporting the hierarchical states.
Summation of their volumes, finally, yields the fraction

fhier �
X

n.n�

Vn � vn�

� h̄121�g . (7)

of hierarchical states. From g . 1 it follows that in the
limit h̄ ! 0 this fraction tends to zero, while the total
number of hierarchical states goes to infinity. In the case
of a system with d fi 2 pairs of conjugate variables, one
needs to replace h̄ by h̄d21 in the above derivation.

In order to check relation (7), we generated a random
matrix model for the classical chain following the approach
of Ref. [22]. For each ensemble of these random matrices,
we fixed v, w, and therefore also g and then varied h̄.
We repeated the above eigenfunction and level statistics
and extracted fhier ( freg � rreg � 0 in this model). The
results for various g are shown in Fig. 3b. The numerical
data agree very well with the expected power laws over
3 orders of magnitude in h̄ and therefore confirm rela-
tions (7) and (2).

In conclusion, we present numerical evidence that, be-
sides chaotic and regular eigenfunctions, there exists a
1216
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FIG. 3. (a) Sketch of the chain model with scaling volumes and
fluxes. (b) The fraction of hierarchical states fhier for three ran-
dom matrix ensembles (g � 1.15, 1.3, and 1.86) as a function of
1�h̄ as determined from eigenfunction (dots) and level statistics
(diamonds). The solid lines show the predicted power laws ac-
cording to Eq. (2). (c) Classical staying probability P�t� � t2g

confirming the values of g used in (b).

third class, namely, hierarchical eigenstates. Their frac-
tion is determined from eigenfunction and level statistics
and shows a power law as a function of h̄. We explain
the origin of the power law and relate its exponent to the
well-known power-law trapping of mixed systems.

We thank S. Tomsovic and L. Kaplan for helpful
discussions.
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