
VOLUME 85, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 7 AUGUST 2000
Order a3 ln���1���a��� Corrections to Positronium Decays

Bernd A. Kniehl1 and Alexander A. Penin1,2

1II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
2Institute for Nuclear Research, Russian Academy of Sciences, 60th October Anniversary Prospect 7a, Moscow 117312, Russia

(Received 24 April 2000)

The logarithmically enhanced a3 ln�1�a� corrections to the para- and orthopositronium decay widths
are calculated in the framework of dimensionally regularized nonrelativistic quantum electrodynamics.
In the case of parapositronium, the correction is negative, approximately doubles the effect of the leading
logarithmic a3 ln2�1�a� one, and is comparable to the nonlogarithmic O�a2� one. As for orthopositron-
ium, the correction is positive and almost cancels the a3 ln2�1�a� one. The uncertainty in the theoretical
prediction for the parapositronium decay width is reduced to 1022 ms21.

PACS numbers: 36.10.Dr, 12.20.Ds, 31.30.Jv
Positronium (Ps), which is an electromagnetic bound
state of the electron e2 and the positron e1, is the
lightest known atom. Since its theoretical description is
not plagued by strong-interaction uncertainties, thanks to
the smallness of the electron mass me relative to typical
hadronic mass scales, its properties can be calculated
perturbatively in quantum electrodynamics (QED), as
an expansion in Sommerfeld’s fine-structure constant a,
with very high precision. Ps is thus a unique laboratory
for testing the QED theory of weakly bound systems.

The decay widths of the 1S0 parapositronium (p-Ps)
and 3S1 orthopositronium (o-Ps) ground states to two and
three photons, respectively, have been the subject of a vast
number of theoretical and experimental investigations. The
present theoretical knowledge may be summarized as
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are the lowest-order results. The O�a� coefficients in
Eqs. (1) [1] and (2) [2] read
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Ao � 210.286 606�10� .
(4)

The logarithmically enhanced a2 ln�1�a� terms in Eqs. (1)
and (2) have been obtained in Refs. [3,4], respectively. Re-
cently, the nonlogarithmic O�a2� coefficients in Eqs. (1)
[5] and (2) [6] have been found to be

Bp � 1.75�30� ,

Bo � 44.52�26� .
(5)

Note that the light-by-light-scattering diagrams have been
omitted in Ref. [6]. Such diagrams contribute 22.11 to
Bp [5]. The missing contribution to Bo is likely to be
of similar magnitude and thus relatively suppressed. The
p-Ps (o-Ps) decays into four (five) photons, which are not
included in Eq. (5), lead to an increase of the coefficient
Bp (Bo) by 0.274�1� [0.19�1�] [7]. In O�a3�, only the
leading logarithmic a3 ln2�1�a� terms are known [8]. In-
cluding all the terms known so far, we obtain for the p-Ps
and o-Ps total decay widths

Gth
p � 7989.512�13� ms21, (6)

Gth
o � 7.039 943�10� ms21, (7)

where the errors stem from the coefficients Bp and Bo ,
respectively. The total uncertainties in Gth

p and Gth
o will

be estimated later on. The purpose of this Letter is to
complete our knowledge of the logarithmically enhanced
terms of O�a3� by providing the coefficients Cp and Co , in
analytic form. We also give order-of-magnitude estimates
of the unknown coefficients Dp and Do .

On the experimental side, the present situation is not
entirely clear. Recently, the Ann Arbor group measured
the p-Ps width to be [9]

Gexp
p � 7990.9�1.7� ms21, (8)

which agrees with Eq. (6) within the experimental error.
However, in the case of o-Ps, their measurements [10,11],
© 2000 The American Physical Society
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Gexp
o �gas� � 7.0514�14� ms21,

Gexp
o �vacuum� � 7.0482�16� ms21,

(9)

exceed Eq. (7) by 8 and 5 experimental standard devia-
tions, respectively. This apparent contradiction is known
as the o-Ps lifetime puzzle. On the other hand, the Tokyo
group found [12]

Gexp
o �SiO2� � 7.0398�29� ms21, (10)

which agrees with Eq. (7) within the experimental error.
Leaving this aside, the o-Ps results from Ann Arbor could
be considered as a signal of new physics beyond the stan-
dard model. However, a large number of exotic decay
modes have already been ruled out [13]. No conclusion on
the o-Ps lifetime puzzle can be drawn until the experimen-
tal precision increases and the data become unambiguous.

On the theoretical side, it is an urgent matter to improve
the predictions of the Ps lifetimes as much as possible.
Thus, one is faced with the task of analyzing the O�a3�
corrections, which is extremely difficult, especially for
o-Ps. However, there is a special subclass of the O�a3�
corrections which can be analyzed separately, namely
those which are enhanced by powers of ln�1�a� � 5.
They may reasonably be expected to make a substantial
contribution to the O�a3� corrections. This may be sub-
stantiated by considering Eqs. (1) and (2) in O�a2�, where
logarithmic terms enter for the first time. In the case of
p-Ps (o-Ps), the magnitude of the logarithmic term
amounts to 98% (57%) of the O�a2� correction. The
origin of the logarithmic corrections is the presence of sev-
eral scales in the bound-state problem. The dynamics of
the nonrelativistic (NR) e1e2 pair near threshold involves
four different scales [14]: (i) the hard scale (energy and
momentum scale like me); (ii) the soft scale (energy and
momentum scale like bme); (iii) the potential scale (en-
ergy scales like b2me, while momentum scales like bme);
and (iv) the ultrasoft (US) scale (energy and momentum
scale like b2me). Here b denotes the electron velocity
in the center-of-mass frame. The logarithmic integration
over a loop momentum between different scales yields a
power of ln�1�b�. Since Ps is approximately a Coulomb
system, we have b ~ a. This explains the appearance of
powers of ln�1�a� in Eqs. (1) and (2). The leading loga-
rithmic corrections may be obtained straightforwardly by
identifying the regions of logarithmic integration [3,4,8].
The calculation of the subleading logarithms is much
more involved because certain loop integrations must be
performed exactly beyond the logarithmic accuracy.

In the following, we briefly outline the main features
of our analysis. We work in NR QED (NRQED) [15],
which is the effective field theory that emerges by expand-
ing the QED Lagrangian in b and integrating out the hard
modes. If we also integrate out the soft modes and the
potential photons, we arrive at the effective theory of po-
tential NRQED (pNRQED) [16], which contains poten-
tial electrons and US photons as active particles. Thus,
the dynamics of the NR e1e2 pair is governed by the ef-
fective Schrödinger equation and by its multipole interac-
tion with the US photons. The corrections from harder
scales are contained in the higher-dimensional operators
of the NR Hamiltonian, corresponding to an expansion in
b, and in the Wilson coefficients, which are expanded in
a. In the process of scale separation, spurious infrared
(IR) and ultraviolet (UV) divergences arise, which endow
the operators in the NR Hamiltonian with anomalous di-
mensions. We use dimensional regularization (DR), with
d � 4 2 2e space-time dimensions, to handle these diver-
gences [16–18]. This has the advantage that contributions
from different scales are matched automatically. The loga-
rithmic corrections are closely related to the anomalous di-
mensions and can be found by analyzing the divergences
of the NR effective theory. In this way, we have obtained
the leading logarithmic third-order corrections to the en-
ergy levels and wave functions at the origin of heavy quark-
antiquark bound states [19], which includes the QED result
[3,4,8] as a special case. Here, we extend this approach to
the subleading logarithms in QED. Note that the NRQED
approach, endowed with an explicit momentum cutoff and
a fictitious photon mass to regulate the UV and IR diver-
gences, has also been applied to find the third-order cor-
rection, including subleading logarithms, to the hyperfine
splitting in muonium [20].

The annihilation of Ps is the hard process which gives
rise to imaginary parts in the local operators of the NR
Hamiltonian [21]. The decay width can be obtained by
averaging these operators over the bound-state wave func-
tion. The hard-scale corrections, which require fully rela-
tivistic QED calculations and are most difficult to find, do
not depend on b and do not lead to logarithmic contribu-
tions by themselves. However, they can interfere with the
logarithmic corrections from the softer scales. Thus, the
only results from relativistic perturbation theory that enter
our analysis are (i) the one-loop hard renormalizations of
the imaginary parts of the leading four-fermion operators,
i.e., the Born decay amplitudes, which are given by the
coefficients Ap and Ao , and (ii) the hard parts of the one-
loop O�ab2� operators [22]. The missing ingredients can
all be obtained in the NR approximation. These include
(i) the correction to the Ps ground-state wave function at
the origin due to the O�ab2� terms in the NR Hamiltonian,
(ii) the O�ab2� corrections to the leading four-fermion op-
erators, and (iii) the correction due to the emission and ab-
sorption of US photons by the Ps bound state.

The value of the ground-state (n � 1) wave function
at the origin c1�0� may be extracted from the NR Green
function G�x, y, E�, which satisfies the equation

�HC 1 DH 2 E�G�x, y , E� � d�3��x 2 y� , (11)

where HC is the Coulomb Hamiltonian and DH stands
for the terms of higher orders in a and b. The solution
of Eq. (11) can be found in time-independent perturba-
tion theory as an expansion in a around the leading-order
1211
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Coulomb Green function. We thus obtain the correction
Dc

2
1 in the relationship jc1�0�j2 � jc

C
1 �0�j2�1 1 Dc

2
1 �,

where c
C
1 �0� is the ground-state wave function at the origin

in the Coulomb approximation. As mentioned above, this
analysis may be enormously simplified by the use of DR.
Proceeding along the lines of Ref. [19], we thus recover
with ease the well-known a2 ln�1�a� terms in Eqs. (1) and
(2) [3,4],
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where S is the eigenvalue of the total-spin operator S. As
mentioned above, D0c

2
1 interferes with the one-loop hard

renormalization of the Born amplitudes, Ap and Ao , to pro-
duce a3 ln�1�a� terms. The resulting contributions to the
coefficients Cp and Co read 2Ap and 2Ao�3, respectively.
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ê

µ
m2

q2

∂e

2
1
7

∏
, (14)

DusH �
8
3

pa

m2
e

∑
1
ê
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where 1�ê � 1�e 2 gE 1 ln�4p�, with gE being Euler’s
constant, m is the ’t Hooft mass scale of DR, q is the three-
momentum transfer, and EC

1 � 2a2me�4 is the Coulomb
ground-state energy. Equations (13) and (14) give the
hard [22] and soft [17] O�ab2� contributions to the NR
Hamiltonian, respectively. The US contribution given in
Eq. (15) arises from the emission and absorption of an
US photon, which converts the on-shell Ps ground state
into some off-shell state of the Coulomb spectrum, with
three-momentum p, before it decays. It is the only US
contribution which can be represented by an operator of
instantaneous interaction and thus give rise to logarithmic
corrections. It has been found with the help of the method
developed for the more complicated case of quantum chro-
modynamics in Ref. [23], where it was applied to the
on-shell renormalization of the heavy-quarkonium wave
function at the origin. The singularities of the operators
in Eqs. (13)–(15) yield the logarithmic corrections which
we are interested in. Up to their logarithmic dependences
on q2 and p2, these operators are of the d-function type in
coordinate space and, therefore, lead to additional singu-
larities in the Coulomb Green function at the origin [19].
As a consequence, in the evaluation of the Green func-
tion in time-independent perturbation theory from Eq. (11)
1212
with DhH , DsH , and DusH , overlapping logarithmic
divergences appear in the part of the first-order term which
corresponds to the interference of the one-photon contri-
bution to the Coulomb Green function and the first terms
of Eqs. (13)–(15). This results in the double-logarithmic
contribution, which can be directly extracted from the co-
efficient of the leading double-pole singularity [19]. Since
we are interested in the single-logarithmic contribution,
we also have to keep the subleading terms in this analy-
sis. The logarithmic corrections which are generated by
the nonoverlapping singularities can be obtained by putting
m � me in the Coulomb Green function at the origin and
q2 � p2 � 2meEC

1 in Eqs. (13)–(15), and proceeding as
in the evaluation of Eq. (12). We thus obtain
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The first term herein agrees with the corresponding terms
in Eqs. (1) and (2) [8], while the second one represents a
new result.

The last source of a3 ln�1�a� terms is the O�ab2� cor-
rections to the leading four-fermion operators. Since they
do not involve the singular Coulomb Green function at the
origin, there are no overlapping divergences, and we may
simply read off the resulting a3 ln�1�a� terms from the
poles of their US parts, which are given by the operator

2
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Here V4�p, p0, S� is the local four-fermion operator which
generates the leading-order decay widths. Taking the ex-
pectation value of Eq. (17) with respect to the ground-state
wave function, one encounters power-divergent integrals
[21]. They can be consistently treated within DR [5].
This leads to the substitution p2, p02 ! meEC

1 in the ma-
trix element. The UV-pole contribution of Eq. (17) is then
canceled by the IR pole of the hard contribution [24]. This
implies that the logarithmic integration ranges from the US
scale a2me up to the hard scale me, so that 1�e should be
replaced by 4 ln�1�a� [19]. The resulting a3 ln�1�a� cor-
rections to the decay widths are spin independent and read
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Summing up the various a3 ln�1�a� terms derived
above, we obtain

Cp � 2Ap 2
124
45

1
2
3

ln2 � 27.359 ,

Co � 2
Ao

3
1

4
5

1
8
3

ln2 � 6.077 .

(19)



VOLUME 85, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 7 AUGUST 2000
In the case of p-Ps, the new a3 ln�1�a� term has the same
sign and nearly the same magnitude as the a3 ln2�1�a�
one. The sum of these two terms approximately com-
pensates the positive contribution from the nonlogarithmic
O�a2� term. As for o-Ps, the new a3 ln�1�a� term cancels
approximately 4�5 of the a3 ln2�1�a� contribution. Our
final predictions for the p-Ps and o-Ps total decay widths,
including the multiphoton channels, read

Gth
p � 7989.476�13� ms21, (20)

Gth
o � 7.039 970�10� ms21, (21)

which has to be compared with Eqs. (6) and (7). Again,
we quote only the errors due to Eq. (5). As before,
Eq. (20) agrees with the Ann Arbor [9] measurement (8),
and Eq. (21) favors the Tokyo [12] measurement (10),
while it significantly undershoots the Ann Arbor [10,11]
measurements (9).

The missing nonlogarithmic O�a3� corrections in
Eqs. (1) and (2) receive contributions from three-loop
QED diagrams with a considerable number of external
lines, which are far beyond the reach of presently avail-
able computational techniques. In this sense, we expect
Eqs. (20) and (21) to remain the best predictions for the
forseeable future. However, we may speculate about the
magnitudes of the coefficients Dp and Do . Two powers
of a in these terms can be of NR origin. Each of them
should be accompanied by the characteristic factor p,
which happens for the logarithmic terms. Thus, we
estimate the coefficients Dp and Do to be a few units
times p2. This rule of thumb is in reasonable agreement
with the situation at O�a2�, where we have Bp � p2�6
and Bo � 4p2. If the coefficients Dp and Do do not
have magnitudes in excess of 100, then the uncertainties
due to the lack of their knowledge falls within the errors
quoted in Eqs. (20) and (21). In the case of p-Ps, our
analysis then reduces the uncertainty in the predicted
decay width to 1022 ms21, while in the case of o-Ps
the uncertainty is limited by the unknown light-by-light-
scattering contribution to Bo . If we assume, for example,
that the latter is of the same size as the one to Bp , then the
resulting contribution to Gth

o amounts to 8 3 1025 ms21,
which exceeds the error quoted in Eq. (21) by a factor of
8. Anyway, further progress in our understanding of the
Ps lifetime problem crucially depends on the reduction
of the experimental errors, which now greatly exceed the
theoretical ones.

Finally, we note that the technique developed in this Let-
ter can also be applied to the calculation of the subleading
logarithmic a7 ln�1�a� terms for the Ps hyperfine splitting.
This problem is of special interest because of the apparent
discrepancy between the latest experimental data [25] and
the best theoretical predictions, which include the O�a6�
corrections (see Ref. [18] and references cited therein) and
the leading logarithmic a7 ln2a term [8].
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