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Continuum Field Description of Crack Propagation
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We develop continuum field model for crack propagation in brittle amorphous solids. The model is
represented by equations for elastic displacements combined with the order parameter equation which
accounts for the dynamics of defects. This model captures all important phenomenology of crack propa-
gation: crack initiation, propagation, dynamic fracture instability, sound emission, crack branching, and
fragmentation.

PACS numbers: 62.20.Mk, 02.70.Bf, 46.50.+a
The dynamics of cracks is the long-standing challenge
in solid state physics and materials science [1,2]. The phe-
nomenology of the crack propagation is well established
by recent experimental studies [3–9]: once a flux of en-
ergy to the crack tip passes the critical value, the crack
becomes unstable and begins to branch and emit sound.
Although this rich phenomenology is consistent with the
continuum theory, it fails to describe it because the way
the macroscopic objects break depends on the details of
cohesion on microscopic scales [10].

Significant progress in understanding fracture dynam-
ics was made by large-scale (about 107 atoms) molecular
dynamics (MD) simulations [11,12]. Although limited to
submicron samples, these simulations were able to repro-
duce several key features of the crack propagation, in par-
ticular, the initial acceleration of cracks and the onset of
the dynamic instability. However, detailed understanding
of the complex physics of the crack propagation still re-
mains a challenge [13].

A uniform motion of the crack is relatively well under-
stood in the framework of the continuum theory [14]. Most
of the studies treat cracks as a front or interface separat-
ing broken and unbroken materials and propagating under
the forces arising from elastic stresses in the bulk of ma-
terial and additional cohesive stresses near the crack tip
[15–18]. Although these investigations revealed some fea-
tures of the oscillatory crack tip instability, they are based
on built-in assumptions, e.g., on the specific dependence of
the fracture toughness on velocity, structure of the cohesive
stress, etc. To date there is no continuum model capable
to describe in the same unified framework the whole phe-
nomenology of the fractures, ranging from crack initiation
to oscillations and branching.

In this Letter we present a continuum field theory of
the crack propagation. Our model is the wave equations
for the elastic deformations combined with the equation
for the order parameter. The model captures all impor-
tant phenomenology: crack initiation by small perturba-
tion, quasistationary propagation, instability of fast cracks,
sound emission, branching, and fragmentation.

Our model is a set of the elastodynamic equations
coupled to the equation for the order parameter r, which
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is related to the relative concentration of point defects in
the amorphous material (e.g., microvoids) and character-
izes local order [19]. We define r � 1 outside the crack
(no defects) and r � 0 inside the crack (all the atomic
bonds are broken). At the crack surface r varies from 0 to
1 on the scale much larger than the interatomic distance,
justifying the continuum description of the crack [20].
Material fails to support tensile stress and breaks when r

becomes below critical value rc.
We consider the two-dimensional geometry focusing on

the so-called type-I crack mode; see Fig. 1. Equations of
motion for an elastic medium [21] are

r0üi � hD �ui 1
≠sij

≠xj
, j � 1, 2 . (1)

ui are the components of displacements, hD �ui accounts
for viscous damping, h is the viscosity coefficient [22],
and r0 is the density of material. In the following we
set r0 � 1. The stress tensor sij is related to deforma-
tions via

sij �
E

1 1 s

µ
uij 1

s

1 2 s
ulldij

∂
1 n �rdij , (2)

where uij is the elastic strain tensor, E is the Young’s
modulus, and s is the Poisson’s ratio. To take into account
the effect of weakening of material with the decrease of r

we assume dependence of E upon r, E � E0r, where
E0 is the regular Young’s modulus. The term �n �r in
Eq. (2) accounts for the hydrostatic pressure created due
to generation of new defects; n is the constant [23].

One can observe that Eqs. (1) are linear elasticity equa-
tions for r � 1, i.e., outside the crack, and have trivial
dynamics for r � 0 (there is no dynamics inside crack).
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FIG. 1. Schematic representation of fixed-grips loading.
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We assume that the order parameter r is governed
by pure dissipative dynamics which can be derived
from the “free-energy” type functional F , i.e., �r �
2dF �dr. Following Landau ideas on phase transitions
[24], we adapt the simplest form for the free energy
F �

R
dx dy�Dj=rj2 1 f�r��, where the “local poten-

tial energy” f has minima at r � 0 and r � 1. Choosing
the polynomial form for f�r� we arrive at

�r � DDr 2 ar�1 2 r�F�r, ull� 1 f�r�
≠r

≠xl
�ul . (3)

Coupling to the displacement field enters through the po-
sition of the unstable fixed point defined by the function
F�r, ull�, where ull is the trace of the strain tensor. The
constraint imposed on F�r, ull� is that it must have one
zero in interval 1 . r . 0: F�rc, ull� � 0, 1 . rc . 0,
and ≠rF�r � rc, ull� , 0. The simplest form of F sat-
isfying this constraint is F�r, ull� � 1 2 �b 2 mull�r.
Here b and m are material constants related to such proper-
ties as crack toughness and strain to failure. D and a can be
set to 1 by rescaling t ! at, xi ! nxi , where n2 � D�a.

The last term in Eq. (3) represents the coupling of the
order parameter to the velocity �u and is responsible for the
localized shrinkage of the crack due to material motion.
We find that the specific form of the function f�r� is
irrelevant, and take f�r� � cr�1 2 r� to ensure that f
vanishes at r � 0 and r � 1, c being a dimensionless
material constant. We have found that this term in Eq. (3)
is crucial to maintain the sharp form of the crack tip.

Static solutions.—Equations (1)–(3) have a diplike so-
lution corresponding to the open gap far behind the crack
tip [a “groove” along the x axis for our geometry (see
Fig. 1)]. The static one-dimensional equations read

≠ruyy

≠y
� 0 ,

≠2r

≠y2 2 r�1 2 r� �1 2 �b 2 muyy�r� � 0 ,
(4)

with the fixed-grips boundary conditions (BC): uy� y �
6L� � 6Ld (d, the relative displacement), r� y �
6L� � 1, and ≠yr� y � 0� � 0. Exclusion of uyy from
Eqs. (4) yields

uyy � C�r, ≠2
jr � r�1 2 r� �1 2 br� , (5)

where C is a constant of integration [C
RL

0 dy�r� y� �
Ld], b � b��1 1 mC�, and j � y

p
1 1 mC. The so-

lution to Eq. (4) satisfying the BC for L ! ` is

r �

p
�b 1 1� �1 2 b�2� cosh�j

p
b 2 1 � 1 2 2 bp

�b 1 1� �1 2 b�2� cosh�j
p

b 2 1 � 1 2b 2 1
.

(6)

This solution exists for 1 , b , 2. A deep and wide
crack opening is attainable if 2 2 b � e ø 1. In this
case the BC for uy can be reduced to dL � C�L 1

p
p

3��eb� � yielding an equation for e since C � �b�2 2

1��m. For e ø 1 the width of the crack opening d,
defined as r�d�2� � 1�2, is d �
p

2�b ln�24�e�. After
exclusion of e one arrives at
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s
8
b
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8b
p

L

√
2md

b 2 2
2 1

!#
. (7)

The solution to Eq. (7) exists only if d exceeds some criti-
cal value dc given by dc � �b�2 2 1��m, which leads
to the relation between the strain to failure dc and the
material parameters m and b. The logarithmic, instead
of linear, dependence of crack opening on system size L
in Eq. (7) is a shortcoming of the model resulting from an
oversimplified dependence of the function F on ull .

To study the dynamics of cracks we perform numerical
simulations of Eqs. (1)–(3). We use an explicit second-
order scheme with the number of grid points up to 4000 3

800. Selected results are presented in Figs. 2–5.
Some estimates of parameters of the model are in or-

der. Our unit of length l is the width of the craze zone

FIG. 2. (a) Grey-coded images of r�x, y�; (b) hydrostatic
pressure p � 2�sxx 1 syy�; (c) shear sxy . Domain size
800 3 200, number of grid points 1600 3 400, and d � 0.05,
h � 0.25, E0 � 10, s � 0.2, b � 2.25, c � 11, n � 2.3,
m � 9.2. (d) r�x, y� for unstable propagation at d � 0.089 and
(e) d � 0.11. Domain size 1200 3 200, 2400 3 400 grid
points. (f ) r�x, y� for propagation with fragmentation,
E0 � 100, s � 0.36, c � 16, n � 2.3, m � 54, and
d � 0.03, domain size 2000 3 400, 4000 3 800 grid points.
We displaced the initial crack (notch) from the center line by
a small amount in the y direction to avoid degeneracy of the
initial conditions.
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FIG. 3. um vs crack velocity V for parameters of Figs. 2a–2c.
Solid line shows um vs V from linear elasticity [14]; � show
result of numerical simulations. Inset: angular dependence of
shear stress Sxy (filled circles). The dependence from linear
elasticity theory for infinite crack is shown by solid line.

and is of the order of a micron in PMMA (Plexiglas)
[20]. The unit of time t is obtained from l � 1 mm
and the Rayleigh wave speed VR � 103 m�s. Since in
Eq. (1) VR �

p
E0, one obtains t �

p
E0 3 1029 s. For

the value of E0 we used E0 � 10 100. We will show later
that it is consistent with the experimental data for PMMA.
The Poisson’s ratio s for PMMA is 0.36. Simulations with
s � 0.2 (glass) did not show qualitative difference. The
viscosity coefficient h can be extracted from the sound ab-
sorption data. For PMMA we find h � 13�

p
E0.

Quasistationary propagation.—We consider crack
propagation initiated from a long notch with the length
of the order 100 units. At relatively small loadings d we
observe a quasistationary propagation (no oscillations).
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FIG. 4. Crack velocity V�VR vs G�Gc, Gc corresponds to
V � 0.2VR . Open circles, �, correspond to stable propagation,
crosses, 3, to unstable propagation, parameters are the same
as for Fig. 2, and diamonds show the experimental data from
Ref. [5] normalized by VR in PMMA 926 m�s. Inset: curvature
k vs V�VR for unstable crack at the level r � 0.5, parameters
of Fig. 2f. Arrows indicate the progression of time.
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The crack produces the stress concentration near the tip,
while the stress is relaxed behind the tip; see Fig. 2b. The
distribution of shear (Figs. 2c and 3) is close to that ex-
pected from the elasticity theory. The angular dependence
Sxy�u� of the shear stress sxy near the tip is close to
the theoretical dependence sxy�r , u� � r21�2S0

xy 1 . . . ,
where S0

xy�u� � sin�u� cos�3u�2� obtained for the infinite
stationary crack. The discrepancy can be attributed to
finite-size effects and velocity correction. We computed
the angle um of the maximum shear stress vs crack speed
V normalized by the Rayleigh wave speed VR . (See
Figs. 2c and 3.) As one derives from the linear elasticity,
the angle increases with the speed of the crack [14], in
agreement with our numerical results.

The calculated dependence of the crack tip velocity V
on the effective fracture energy G � d2, shown in Fig. 4,
demonstrates a reasonable agreement with the experimen-
tal data from Ref. [5] for E0 � 10. Similar dependence for
E0 � 100 lies significantly below the experimental curve.
Thus, comparison with the experiment can be used to ex-
tract the value of parameter E0.

The instability of the crack occurs when the velocity be-
comes of the order of 55% of the Rayleigh speed for the
parameters of Figs. 2a–2e. For parameters of Fig. 2f we
have found a lower value of the critical velocity, namely
about 32% of the Rayleigh speed. In all cases the insta-
bility manifests itself as pronounced velocity oscillations,
crack branching and the sound emission from the crack
tip. Figure 4, inset, shows dynamic crack tip blunting (de-
crease of crack tip curvature k) as the velocity increases,
similar to Ref. [25]. We find that for unstable cracks the
curvature is a nonunique function of velocity.

Our calculations indicate the absence of the minimal
crack velocity, the so-called velocity gap [10]. The initial
velocity jump, seen experimentally as well as in some of
our simulations (see Fig. 4), is attributed to the fact that
the initial crack (notch) is too short or too blunt.
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FIG. 5. The crack tip velocity V normalized by Rayleigh ve-
locity VR vs time for d � 0.089 (solid line) and d � 0.11
(dashed line), parameters of Figs. 2d and 2e. Inset: oscilla-
tions of pressure p far away from the crack tip for d � 0.089.
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Instability of crack propagation.—Taking sufficiently
large values of n and c and starting from short cracks
with the large load we observe consecutive crack branch-
ing. Since Eqs. (1)–(3) are homogeneous, these secondary
crack branches typically retract after the stress at the tip
of the shorter crack relaxes. Although this retracting may
indeed take place, e.g., in vacuum the small cracks may
heal; the oxidation of the crack surface and lattice trapping
would prevent cracks from healing. In order to model these
effects, one can introduce an additional field representing
a concentration of oxygen and then couple it to the order
parameter. In some simulations, we multiplied the right-
hand side of Eq. (3) by a monotonic function w�x 2 xtip�:
w�x . 0� � 1 and w�x ! 2`� ! 0, where xtip is the
crack tip position. Thus, we slowed down the evolution
of r behind the crack tip, which, in turn, prevents sec-
ondary cracks from healing. We succeeded in obtaining
realistic crack forms; see Figs. 2d and 2e. For fast cracks
“freezing” is not a necessity, since the retraction is rather
slow. Figure 2f shows results without freezing: massive
crack branching along with crack healing are present.

Far away from the crack tip we have registered oscilla-
tions of hydrostatic pressure (see Fig. 5, inset), which is a
clear indication of the sound emission by the crack tip. The
sound waves reflected from boundaries may also induce
velocity oscillations, but they do not provide a mechanism
for branching [26]. An increase in the applied displace-
ment d results in an increase of amplitude and the number
of subbranches (compare Figs. 2d–2f and 5).

The value of E0 which sets our time scale can be verified
from the comparison with experiments for the frequency of
oscillations. In experiments [4–8] the frequency is of the
order 1 MHz, which results in the characteristic time of
velocity oscillations t0 � 1 ms. Our model gives t0 �
102t � 0.1 1 ms for E0 � 10 100.

We have developed a continuum field theory of the crack
propagation. The central element of our approach is the or-
der parameter description. It enables us to avoid the stress
singularity at the crack tip and to derive the tip instability.
Our model is complementary to MD simulations of cracks
and allows for a description of fracture phenomena on large
scales. The parameters of our model can be obtained from
comparison with the experiment. It will be challenging to
derive the order parameter equation from discrete models
of crack propagation [27,28].
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