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Reconstructing the Cosmic Equation of State from Supernova Distances
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Observations of high-redshift supernovae indicate that the Universe is accelerating. Here we present
a model-independent method for estimating the form of the potential V �f� of the scalar field driving
this acceleration, and the associated equation of state wf. Our method is based on a versatile analytical
form for the luminosity distance DL, optimized to fit observed distances to distant supernovae and dif-
ferentiated to yield V �f� and wf. Our results favor wf � 21 at the present epoch, steadily increasing
with redshift. A cosmological constant is consistent with our results.

PACS numbers: 98.80.Es, 97.60.Bw, 98.80.Cq
The observed relation between luminosity distance and
redshift for extragalactic type Ia supernovae (SNe) appears
to favor an accelerating universe, where almost two-thirds
of the critical energy density may be in the form of a
component with negative pressure [1–5]. Although this
is consistent with VM , 1 and a cosmological constant
L . 0 (e.g., [6]), at the theoretical level a constant L

runs into serious difficulties, since the present value of L

is �10123 times smaller than predicted by most particle
physics models [7].

However, neither the present data nor the theoretical
models require L to be exactly constant. To explore the
possibility that the L-like term (e.g., quintessence) is time
dependent, we use a model for it that mimics the simplest
variant of the inflationary scenario of the early universe.
A variable L term is described in terms of an effective
scalar field (referred to here as the L field) with some self-
interaction V �f�, which is minimally coupled to the gravi-
tational field and has little or no coupling to other known
physical fields. In analogy to the inflationary scenario,
more fundamental theories like supergravity or the M the-
ory can provide a number of possible candidates for the L

field but do not uniquely predict its potential V �f�. On the
other hand, it is remarkable that V �f� may be directly re-
constructed from present-day cosmological observations.

The aim of the present Letter is to go from observations
to theory, i.e., from DL�z� to V �f�, following the prescrip-
tion outlined by Starobinsky [8] (see also [9]). This is the
first attempt at reconstructing V �f� from real observational
data without resorting to specific models (e.g., cosmologi-
cal constant, quintessence, etc.).

Since a spatially flat universe (Vf 1 VM � 1) is both
predicted by the simplest inflationary models and agrees
well with observational evidence, we will not consider
spatially curved Friedmann-Robertson-Walker (FRW) cos-
mological models. In a flat FRW cosmology, the lumi-
nosity distance DL and the coordinate distance r to an
object at redshift z are simply related as (c � 1 here
and elsewhere)
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Note that this relation is purely kinematic and depends
upon neither a microscopic model of matter, including a
L term, nor a dynamical theory of gravity.

For a sample of objects (in this case, extragalactic
SNe Ia) for which luminosity distances DL are measured,
one can fit an analytical form to DL as a function of
z, and then estimate H�z� from (2). If rm � �3H2

0 �
8pG�VM�a�a0�23 is the density of dustlike cold dark
matter (CDM) and the usual baryonic matter, then
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from where it follows that
�H � 24pG�rm 1 �f2� . (4)

Equations (3) and (4) can be rephrased in the following
form convenient for our current reconstruction exercise:
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where x � 1 1 z. Thus from the luminosity distance DL,
both H�z� and dH�z��dz can be unambiguously calcu-
lated. This allows us to reconstruct the potential V �z�
and df�dz if the value of VM is additionally given. In-
tegrating the latter equation, we can determine f�z� (to
within an additive constant) and, therefore, reconstruct the
form of V �f�. Note also that the present Hubble constant
H0 � H�z � 0� enters in a multiplicative way in all ex-
pressions. Thus, neither the potential V �f��H2

0 nor the
cosmic equation of state wf�z� depends upon the actual
value of H0.
© 2000 The American Physical Society
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A fitting function for DL.— We use a rational (in terms
of

p
x ) ansatz for the luminosity distance DL,
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where a, b, and g are fitting parameters. This function
has the following important features: it is valid for a wide
range of models, and it is exactly equal to the analytical
form given by (1) for the two extreme cases: Vf � 0, 1.
At these two limits, as VM ! 1, a 1 g ! 1 and b ! 1;
and as VM ! 0, a, b, g ! 0. The accuracy of our ansatz
is illustrated in Fig. 1.

We choose this form since the value of H�z� obtained
by differentiating DL�x, according to (2), has the cor-
rect asymptotic behavior: H�z��H0 ! 1 as z ! 0, and
H�z��H0 � Ṽ

1�2
M �1 1 z�3�2 for z ¿ 1, where
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This ensures that at high z, the Universe has gone through a
matter dominated phase. It should be noted that ṼM can be
slightly larger than the CDM component VM since the L

field (or quintessence) can have an equation of state mim-
icking cold matter (dust) at high redshifts. For instance,
ṼM � 1.1VM in the quintessence model considered by
Sahni and Wang [10]. On the other hand, ṼM # 1.15VM ,
to ensure that there is sufficient growth of perturbations
during the matter-dominated epoch (see, e.g., the relevant
discussion in [8]).

Note that the right hand side of (6) should be non-
negative for the minimally coupled scalar field model. At
z � 0, this condition gives

4b 1 2g 2 a

2 2 a
$ 3VM , (9)

where the equality sign occurs when the L term is constant.
The fact that DL is smaller in a universe with a time-

FIG. 1. The maximum deviation DDL�DL between the actual
value and that calculated from the ansatz (7) in the redshift range
z � 0 10, as a function of VM � 1 2 Vf. The three curves
plotted are for constant values of the equation of state parameter
[as defined in Eq. (12)] wf � 21 (solid line), 22�3 (dotted
line), and 21�3 (dashed line).
dependent L term than it is in a constant-L universe leads
to a lower limit for the parameter b. When taken together
with the fact that b ! 1 as VM ! 1 (Vf ! 0), this leads
to the following set of constraints:
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The observational data.—Up to now, about 100 SNe Ia
in the redshift range z � 0.1 1 have been discovered, a
large fraction of which have reliable published data from
which luminosity distances can be calculated. We use the
54 SNe Ia from the preferred “primary fit” (“C” in their
Table 1) of the Supernova Cosmology Project [1], includ-
ing the low-z Calan-Tololo sample [11] as used therein.
We adopt the quoted redshifts, reducing them to the
cosmic microwave background frame.

Maximum likelihood fits.—The luminosity dis-
tance DL (Mpc) is related to the measured quantity,
the corrected apparent peak B magnitude mB as mB �
M0 1 25 1 5 log10DL, where M0 is the absolute peak
luminosity of the SN. The function to be minimized is
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; y�z� � 10M0�5DL�z� .

(11)

A fourth fitting parameter, k � 2 3 10M0�5�c�H0�, which
is required in addition to a, b, g in the above minimiza-
tion process, includes both M0 and H0, which cannot be
measured independently of each other. For instance, if
M0 � 219.5 6 0.1 and VM � 0.3, the value of H0 �
61.3 6 2.9 km s21 Mpc21. Note that k only features in
the fit of (7) to the data and does not play a role in the
reconstruction of V �f�.

To obtain the best-fit model, we perform an orthogonal
chi-square fit, using errors on both the magnitude and red-
shift axes in si , subject to the constraints (9) and (10) and
the condition ṼM � VM . The latter condition is used for
simplicity—our results remain essentially the same even
if we use the entire permitted range ṼM # 1.15VM .

The results shown in Table I and in Fig. 2 are for VM �
0.3. In arriving at the best fit, the two constraints in (10)
are found to be redundant, which means that only two
constraints, (9) and ṼM � VM , are actually used.

Reconstructing the scalar field potential.—We show the
form of the effective potential V �z� reconstructed using
(5) in Fig. 3, along with the corresponding plot for V �f�,
where f is calculated by integrating (6). The field f is
determined up to an additive constant f0, so we take f to
be zero at the present epoch (z � 0).

Our experiments with several realizations of synthetic
data show that this method works best if we fix the value
of VM . Henceforth, all reconstructed quantities are shown
for VM � 0.3.

For a scalar field, the pressure p � 2Ta
a �

1
2

�f2 2 V
and the energy density ´ � T0

0 �
1
2

�f2 1 V are related by
the equation of state
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TABLE I. Best-fit parameters.

VM � 0.2 0.25 0.3

a � 1.70210.191
20.518 1.63010.209

20.539 1.53310.229
20.575

b � 0.58510.019
20.020 0.60410.022

20.023 0.61510.025
20.027

g � 20.23010.043
20.045 20.25510.048

20.052 20.25210.056
20.061

k � 1.226 6 0.018 1.229 6 0.018 1.232 6 0.018
	x2
 � 1.03 1.03 1.03a

ṼM � 0.2 6 0.11 0.25 6 0.16 0.3 6 0.23

a	x2
 � x
2
min��N 2 6�, where N � 54. The fit of four variables

is subject to the constraint ṼM � VM , and the inequality (9),
which significantly restricts the permitted region.
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For the cosmological constant, w � 21, while quin-
tessence models [12] generally require 21 # w # 0
for z & 2.

Our reconstruction for wf�z� according to (12) is plotted
in Fig. 4. There is some evidence of possible evolution
in wf with 21 # wf & 20.86 preferred at the present
epoch, and 21 # wf & 20.66 at z � 0.83, the farthest
SN in the sample (these correspond to 68% confidence;
the upper limits are 20.80 and 20.46, respectively, at
90% confidence). However, a cosmological constant with
w � 21 is consistent with the data.

The errors quoted in this paper are calculated using a
Monte Carlo method, where, in a region around the best-fit
values of the parameters shown in Table I, random points
are chosen in parameter space from the probability dis-
tribution function given by the x2 function that is mini-
mized to yield the best fit. At each value of z in the given

FIG. 2. The distance modulus �m 2 M� of the SNe Ia relative
to an VM ! 0 Milne universe (dashed line), together with the
best-fit model of our ansatz (7), plotted as the solid line. The
extreme cases of the �VM , Vf� � �0, 1� and �1, 0� universes are
plotted as dotted lines. Also plotted as the dot-dashed line is
the best-fit Perlmutter et al. [1] model �VM , Vf� � �0.28, 0.72�.
The filled circles are the 54 SNe of the primary fit of [1]. The
high-z SNe of [2] (not used in this analysis) are plotted as
open circles.
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FIG. 3. The effective potential V �z� and the kinetic energy
term �f2 are shown in units of rcr � 3H2

0 �8pG. Also plotted
are the two forms of V �f� for this V �z�, where the errors do
not reflect errors in the z-f relation. The value of f (known
up to an additive constant) is plotted in units of the Planck mass
mP . The solid line corresponds to the best-fit values of the
parameters. In each case, the shaded area covers the range of
68% errors, and the dotted lines the range of 90% errors. The
hatched area represents the unphysical region �f2 , 0.

range, the function in question is evaluated at over 107

such points, and the errors enclosing 68% and 90% of all
the values centered on the median are shown in the figures.

The ages of objects.—Our ansatz (7) also provides us
with a model-independent means of finding the age of the
Universe at a redshift z,

t�z� � H21
0

Z `

z

dz0

�1 1 z0�h�z0�
, (13)

FIG. 4. The equation of state parameter wf�z� � P�r as a
function of redshift. The solid line corresponds to the best-fit
values of the parameters. The shaded area covers the range of
68% errors, and the dotted lines the range of 90% errors. The
hatched area represents the region wf # 21, which is disal-
lowed for a minimally coupled scalar field.
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FIG. 5. The age of the Universe at a redshift z, given in
units of H21

0 (left vertical axis) and in Gyr, for the value of
H0 � 61.3 km s21 Mpc21 (right vertical axis). The shaded re-
gion represents the range of 68% errors, and the dotted lines the
range of 90% errors. The three high-redshift objects for which
age dating has been published [13] are plotted as lower limits
to the age of the Universe at the corresponding redshifts. The
dashed curve shows the same relation for an �VM , Vf� � �1, 0�
universe for the same H0.

where the value of h�z� � H�z��H0 is determined from
(2). Figure 5 shows the age of the Universe at a given z and
compares it with the ages of two high redshift galaxies and
the quasar B1422 1 231 [13]. We find that the require-
ment that the Universe be older than any of its constituents
at a given redshift is consistent with our best-fit model,
which is a positive feature since a flat matter-dominated
universe must have an uncomfortably small value of H0 to
achieve this.

Discussion.—In this Letter, we have proposed a simple,
analytical, three parameter ansatz describing the luminos-
ity distance as a function of redshift in a flat FRW uni-
verse. The form of this ansatz is very flexible and can
be applied to determine DL either from supernovae ob-
servations (as we have done) or from other cosmological
tests such as lensing, the angular size-redshift relation, etc.
Using the resulting form of DL we reconstruct the potential
of a minimally coupled scalar L field (or quintessence) and
its equation of state wf�z�. It should be noted that the basic
equations of this ansatz, (2), (7), (12), and (13), are flexible
and can be applied to models other than those considered
in the present paper. For instance, one can venture beyond
minimally coupled scalar fields by dropping either one or
both of the constraints (9) and (10) (this is equivalent to re-
moving the constraint rL 1 pL $ 0 on the L field). Even
with the limited high-z data currently available, our ansatz
gives interesting results both for the form of V �f�, as well
as wf�z�. As data improve, our reconstruction promises
to recover “true” model-independent values of V �f� and
wf�z� with unprecedented accuracy, thereby providing us
with deep insight into the nature of dark matter driving the
acceleration of the Universe.
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