
VOLUME 85, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 7 AUGUST 2000

1

Statistics of Clustering of Ultrahigh Energy Cosmic Rays and the Number of Their Sources

S. L. Dubovsky,1 P. G. Tinyakov,1,2 and I. I. Tkachev3

1Institute for Nuclear Research, 60th October Anniversary prospect 7a, 117312 Moscow, Russia
2Institute of Theoretical Physics, University of Lausanne, CH-1015 Lausanne, Switzerland

3Institute for Theoretical Physics, ETH-Hönggerberg, CH-8093 Zurich, Switzerland
(Received 20 January 2000)

Observation of clustering of ultrahigh energy cosmic rays (UHECR) suggests that they are emitted by
compact sources. Assuming small (,3±) deflection of UHECR during the propagation, the statistical
analysis of clustering allows an estimate of the spatial density of the sources h�, including those not
yet observed. When applied to astrophysical models involving extragalactic sources, the estimate based
on 14 events with energy E . 1020 eV gives h� � 6 3 1023 Mpc23. With increasing statistics, this
estimate may lead to exclusion of some models.

PACS numbers: 98.70.Sa
Introduction.—Recent analysis of arrival directions of
ultrahigh energy cosmic rays (UHECR) reveals groups of
events (clusters) with arrival directions lying within �3±,
the typical angular resolution of the experiment. The set
of 92 observed events with energy E . 4 3 1019 eV con-
tains seven doublets and two triplets [1]. The small proba-
bility of chance coincidence, of the order of 1023 [1,2],
suggests that clustering is a result of the existence of com-
pact sources. At higher energies, E . 1020 eV, one dou-
blet out of 14 events is observed.

Compact sources of UHECR are naturally explained
in astrophysical models where they are associated with
possible UHECR production sites, such as active galac-
tic nuclei (AGN) [3], hot spots of powerful radiogalax-
ies [4], dead quasars [5], and gamma-ray bursts (GRB)
[6]. These models have much in common. They assume
that primary particles are protons; the sources of the ob-
served UHECR have, therefore, to lie within the Greisen-
Zatsepin-Kuzmin (GZK) cutoff [7] distance. For energies
E � 1020 eV the GZK radius is RGZK � 50 Mpc, while
at E * 2 3 1020 eV it drops to �20 Mpc [8]. In all these
models the distribution of sources in space within the GZK
sphere is close to uniform, while the distribution in lu-
minosity does not depend on space and peaks around a
certain value.

An important common feature of these models is a small
local density of sources. The number density of dead
quasars is estimated as �1024 Mpc23 [5]; the number of
AGN is �10% of the number of galaxies [9], which gives
�5 3 1024 Mpc23. Most likely, only a small fraction of
them is capable of producing UHECR with energies E .

1020 eV. In the case of GRB the effective density of
sources is determined by the rate g of GRB and the typi-
cal time delay t of UHECR particles. Taking t & 105 yr
and the rate g � 2 3 10210 h3 Mpc23 yr21 [10] gives the
density of sources �1025 Mpc23.

The purpose of this Letter is to show that the observed
clustering favors larger density of sources, provided the
propagation of UHECR with energy E . 1020 eV is not
strongly affected by extragalactic magnetic fields. The
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latter assumption is justified if the existing bound on extra-
galactic magnetic field B & 1029 G [11] is valid.

Statistics of clustering.—The observable quantities
which characterize clustering are N̄m, the expected num-
bers of clusters of different multiplicities m (e.g., N̄1 and
N̄2 are the expected numbers of single and double events,
respectively). They depend on the total exposure of the
experiment B and the distribution of sources in the flux
they produce, n�F�, which is defined in such a way that
the number of sources with the flux from F to F 1 dF
is dS � n�F�dF. (Here and below we mean the integral
flux of cosmic rays with energies above some energy
threshold. It measures the average number of events
per unit time per unit area of the detector.) The events
which come from the same source at different times are
statistically independent and therefore have the Poisson
distribution. Thus, the expected number of clusters is

N̄m �
Z `

0

�FB�m

m!
e2FBn�F� dF . (1)

This equation implies that the expected total number of
events Ntot is

N̄tot �
X
m

mN̄m � B
Z `

0
Fn�F� dF � BFtot , (2)

as it should be. The probability to observe k clusters of
multiplicity m is also given by the Poisson distribution,

Pm�k� �
�N̄m�k

k!
e2N̄m . (3)

Any model of UHECR can be characterized by the dis-
tribution of sources in distance and luminosity f�r , L� [in
the case of anisotropic distribution it should be understood
as average over the sphere, f�r , L� �

R
f�r, L� dV�4p].

In order to express n�F� and N̄m in terms of the distribution
function f�r , L�, consider the sources at distances from r
to r 1 dr . The number of such sources with luminosities
from L to L 1 dL is

dS � f�r , L�4pr2 dr dL . (4)
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Making use of the relation F � L�4pr2 and integrating
over r one finds dS � n�F�dF, where

n�F� � �4p�2
Z `

0
dr r4f�r , 4pr2F� . (5)

Here we have neglected the curvature effects since they are
small at distances of order 50 Mpc.

In the case of the astrophysical models, the distribution
function f�r , L� is uniform in space and depends only on
the luminosity. The GZK effect, however, makes distant
sources fainter by a factor exp�2r�R�. This is equivalent
to substituting

f�r , L� ! er�Rh�Ler�R� (6)

in Eq. (5), where h�L� is the distribution of sources in the
luminosity. The exact value of R can be determined by
numerical simulations of UHECR propagation with full
account of the energy dependence. For protons with E .

1020 eV the simulations give R � 25 Mpc [12].
Number of sources.—A key parameter which enters the

distribution f�r , L� is the normalization, or the spatial den-
sity of sources, which can be characterized by the number
of sources S within the sphere of a radius R. Important in-
formation about S can be obtained from statistical analysis
of clustering even if the functional form of the distribu-
tion f�r , L� is not known. The idea is to find the distribu-
tion f�r , L� which corresponds to the minimum number of
sources S� with a total number of events, N̄tot, and the num-
ber of events in clusters, N̄cl � N̄tot 2 N̄1, being fixed.
We will show in a moment that in the case N̄cl ø N̄tot
the number S� is surprisingly large, much larger than the
number of the sources already observed.

It is intuitively clear why in the case N̄cl ø N̄tot the
number of sources is much larger than N̄tot [13]. In order
to produce �Ntot single events by �Ntot sources each of
them has to be bright enough. But then a large number
of doublets would be produced as well. Since this is not
the case, i.e., most of the resolved sources are dim and
produce at most one event, one concludes that there is a
large number of sources which have not yet revealed them-
selves. Assuming that all sources have the same flux F
one finds from Eq. (1) N̄1 � Sn̄ and N̄2 � Sn̄2�2, where
n̄ � FB is the average number of events produced by one
source. Therefore, S � N̄2

1 ��2N̄2� � N̄2
tot�N̄cl, i.e., much

larger than N̄tot. Using methods described in the Appen-
dix it is possible to show that the case of equal fluxes cor-
responds to the absolute minimum of S. However, this
distribution is unphysical. Many realistic situations corre-
spond to a homogeneous distribution of sources in space
when more distant sources are fainter, consequently, their
number has to be even larger than predicted by the above
estimate.

In astrophysical models the distribution f�r , L� is given
by Eq. (6) containing one unknown function h�L�. The
minimum density of sources is determined by minimizing
over h�L�. As is shown in the Appendix, the minimum is
reached at the delta-function distribution

h�L� � h�d�L 2 L�� , (7)

where L� is the luminosity of the sources and h� is their
spatial density. The unknown parameters h� and L� can be
related to N̄tot and N̄cl by making use of Eqs. (1) and (2).
Introducing the notations

S� � �4p�3�R3h� ,

n� � BL���4pR2� ,
(8)

where n� is the expected number of events from one source
at the distance R in the absence of the GZK cutoff, one has
the following equations:

N̄tot � 3S�n� , (9)

N̄1 � 3S�n�

Z `

0
dx exp�2x 2 n�x22e2x� . (10)

These equations can be solved perturbatively at small
N̄cl ø N̄tot. One finds

n� �
1
p

N̄2
cl

N̄2
tot

, (11)

S� �
p

3

N̄3
tot

N̄2
cl

. (12)

If N̄cl ø N̄tot, the minimum number of sources S� is
indeed much larger than N̄tot and, therefore, is much
larger than the number of sources already observed. From
Eq. (11), each source produces much less than 1 event in
average.

Discussion.—Let us apply these arguments to the ob-
served events with energies E . 1020 eV. In this case,
Ntot � 14 and Ncl � 2. The solution to Eqs. (9) and (10)
is S� � 400, which at R � 25 Mpc corresponds to the
density

h� � 6 3 1023 Mpc23. (13)

This number is large as compared to the density of sources
in most of the astrophysical models. However, it should
be interpreted with care. One may expect large statistical
fluctuations because both Ntot and Ncl are small and may
not coincide with their expected values.

In order to address this issue quantitatively, let us find
the model which has the largest probability p�h�� to re-
produce the observed clustering at fixed density of sources
h�. To this end, consider the set of models which are de-
scribed by Eqs. (6) and (7) and are characterized by two
parameters h� and L�. At fixed density of sources, there
remains a freedom of changing L�. The probability to re-
produce the observed data is maximum for some L�; this
probability is p�h��. By construction, there are no models
with the density of sources smaller than h�, in which the
probability to reproduce the observed data is larger than
p�h��.
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TABLE I. Minimum density of sources h� in the units of
1025 Mpc23, and corresponding source luminosity in the units
of n � BL���4pR2�, which are required to reproduce the ob-
served clustering with given probability p for the real experi-
mental data (1 doublet out of 14 events) and for two hypothetical
data sets with a larger number of events (one doublet out of 30
events and one doublet out of 60 events).

14 events 30 events 60 events
Probability 1 doublet 1 doublet 1 doublet

p h� n h� n h� n

0.1 23 0.51 320 0.065 3100 0.012
0.01 3.2 5.7 63 0.38 690 0.058
0.001 21 1.3 260 0.15

There is some ambiguity in defining what is “to repro-
duce the observed data.” In the case at hand we request that
the number of singlets is 12 or larger, the number of dou-
blets is 1 or smaller, and the number of clusters with the
multiplicity 3 and larger is zero. Equation (3) determines
the probability p�h�, L�� of such clustering as a function of
two parameters h� and L�. The probability p�h�� is found
by maximizing p�h�, L�� at fixed h�. We have performed
this calculation numerically. The results are summarized
in Table I in the form of lower bounds on the density of
sources. We also present the source luminosity in the units
of n � BL���4pR2�, i.e., the number of events from a
single source at the distance R.

The models where the observed clustering occurs with
probability 1% have minimum �2 sources inside the
25 Mpc sphere. In the latter case most of the observed
14 events are produced by the sources which are farther
than 25 Mpc and thus have to be bright enough. This is
reflected in Table I from which we see that these sources
would produce on average �6 events each (in the absence
of the GZK cutoff) if placed at 25 Mpc.

It is worth noting that the numbers of Table I correspond
to the extreme situation when the distribution of sources is
given by Eq. (7) with a particular value of L�. In realistic
models, the distribution of sources in luminosity is usually
spread over an order of magnitude at least. There may
also be constraints on the luminosity of the sources. In
these cases, the lower bounds on the number of sources
are higher than in Table I.

When the new large-area detectors like the Pierre Auger
array [14] will start operating, the number of observed
events will increase and the statistical errors in determina-
tion of the density of sources will go down. Correspond-
ingly, the lower bounds on the density will become higher.
To show that the bounds may become very high when the
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total number of events is still small, we have performed
calculations for two hypothetical situations, 1 doublet out
of 30 events, and 1 doublet out of 60 events. The results
are also listed in Table I. The bounds grow roughly like the
cube of the number of events, in agreement with Eq. (12).

To summarize, the statistical analysis of clustering
may provide tight constraints on astrophysical models of
UHECR when the number of clusters is small. In this
situation, a key quantity is the density of sources which
can be bound from below in a model-independent way.
The bound grows very fast with the number of single
events above E � 1020 eV and is potentially dangerous
for astrophysical models which associate production of
UHECR with GRB or exceptional galaxies such as AGN,
powerful radiogalaxies, and dead quasars.

Our method equally applies to models in which UHECR
are produced in the Galactic halo, or in which primary
particles are immune to the background radiation. The
relation (12) remains valid with a different numerical co-
efficient of order one and different meaning of S�. In the
first case S� is the number of sources in the halo, and
detailed analysis shows that statistical properties of clus-
tering of UHECR are compatible with clumpiness of su-
perheavy dark matter in decays of which UHECR may be
produced. In the second case our method counts the num-
ber of UHECR sources within the cosmological horizon,
which is inaccessible by other means.

Appendix: Minimum number of sources.—Consider the
problem in general terms. First note that by changing
the integration variable in Eq. (5) one can show that any
distribution is equivalent to a factorizable one. So, let us
take the distribution of sources in the form

f�r , L� � g�r�h�L� . (14)

Let us fix g�r� and minimize the number of sources

S � 4p
Z `

0
r2g�r� dr

Z `

0
h�L� dL

with respect to the distribution h�L� under the constraints
fixing N̄tot and N̄1,

B
Z `

0
g�r� dr

Z `

0
Lh�L� dL � N̄tot , (15)

B
Z `

0
dr dL Lh�L�g�r� exp

µ
2

BL
4pr2

∂
� N̄1 , (16)

This is equivalent to minimizing the functional
W � 4p
Z `

0
dL h�L�

Z `

0
g�r� dr

Ω
r2 1 l

BL
4p

2 m
BL
4p

exp

µ
2

BL
4pr2

∂æ
2 lN̄tot 1 mN̄1 (17)

with respect to h�L�. Here l and m are the Lagrange multipliers.
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The functional (17) is linear in h�L�; denote the coeffi-
cient by G�L�,

G�L� �
Z `

0
g�r� dr

Ω
r2 1 l

BL
4p

2 m
BL
4p

exp

µ
2

BL
4pr2

∂æ
.

At those values of L where G�L� is negative, the mini-
mum of W is at h�L� ! `. The latter, however, is not
compatible with Eqs. (15) and (16). Therefore, at the mini-
mum the values of l and m have to be such that G�L� is
non-negative.

At those values of L where G�L� is positive, the mini-
mum of W is reached at h�L� � 0. If G�L� is positive
at all L, then h�L� is identically zero and Eqs. (15) and
(16) are again violated. Therefore, l and m must be such
that G�L� touches zero at some L�. The function h�L� is
nonzero only at this point. Thus, the minimum number of
sources corresponds to the situation when all of them have
the same luminosity L�, and we arrive at the delta-function
distribution, Eq. (7).

It remains to show that for a given positive function g�r�
satisfying

R
g�r� dr , ` the Lagrange multipliers l and m

can always be chosen in such a way that G�L� is positive
everywhere except at an isolated point. To this end rewrite
G�L� in the following form:

G�L� � C 1 lF�L� , (18)

where C �
R

r2g�r� dr is a positive constant and the func-
tion F�L� depends only on the ratio m�l,

F�L� �
BL
4p

Z `

0
g�r� dr

Ω
1 2

m

l
exp

µ
2

BL
4pr2

∂æ
.

The behavior of the function F�L� is the following. At
L ! 0 it goes to zero. At small L it is negative if m�l . 1
and positive otherwise. At L ! ` it grows linearly with
L, the coefficient being B�4p

R
g�r� dr . 0. Therefore,

at m�l . 1 the function F�L� must have an absolute mini-
mum at some L� . 0 (which is a function of m�l). Then it
is clear from Eq. (18) that by choosing l � 2C�F�L�� .

0 one can set G�L� to zero in that particular point. The ar-
gument can be easily generalized to the case of an infinite
number of sources,

R
g�r�r2 dr � `.
In order to apply this argument to the case of astrophysi-
cal models, one should find the factorizable distribution
f̃�r , L� which produces the same n�F� as Eq. (6). This can
be done by substituting Eq. (6) into Eq. (5) and changing
the integration variable according to

r2 exp�r�R� � x2. (19)

The result reads

f̃�x, L� � g�x�h�L� ,

where

g�x� � �1 1 r�x��2R	21e23r�x��2R

and r�x� is defined by Eq. (19).
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