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The Gross-Pitaevskii approximation is a long-wavelength theory widely used to describe a variety of
properties of dilute Bose condensates, in particular trapped alkali gases. We point out that for short-
ranged repulsive interactions this theory fails in dimensions d = 2, and we propose the appropriate
low-dimensional modifications, which have a universal form. For d = 1 we analyze density profiles in
confining potentials, superfluid properties, solitons, and self-similar solutions.
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Experimental observation of Bose-Einstein condensa-
tion (BEC) in trapped alkali vapors [1] has ushered in a new
era of superlow temperature physics. The Gross-Pitaevskii
(GP) mean-field theory [2] has proven to be an indispens-
able tool in both analyzing and predicting the outcome of
experiments.

With rapid progress in the experimental exploration of
BEC systems it is reasonable to anticipate that effectively
one- and two-dimensional systems are realistic prospects
in the near future [3]. For example, high aspect ratio cigar-
shaped traps approximating quasi-one-dimensional BEC
systems are already available experimentally [4]. From the
theoretical viewpoint low-dimensional systems are rarely
well represented by mean-field theories, which leads one
to question the validity of the GP theory in one and two
dimensions. In this paper we shall show that, indeed,
the physics of dilute Bose systems requires a fundamental
modification of the GP theory in low dimensions d = 2.

The GP theory is a quasiclassical (or mean-field) ap-
proximation which replaces the bosonic field operator by
a classical order parameter field ®(r, r). For short-ranged
interactions the interparticle potential U(r) is replaced by
g84(r), where g is the pseudopotential. Then for a system
of bosons of mass m in an external potential V one arrives
at the energy functional and the equation of motion for ®
of the following form:
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The GP equations (1) and (2) are widely used to compute

a variety of properties of Bose systems [2].

The GP approximation is a long-wavelength theory rely-
ing on the concept of the pseudopotential to account for in-
terparticle interactions. However, for repulsive bosons the
canonical pseudopotential vanishes in two dimensions [5],
implying that an essential modification of the GP theory is
necessary for d = 2. To see how to modify the theory, it
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is useful to rewrite the last integrand of (1) in terms of the
particle density n = |®|?, so that (g/2)|®|* = (g/2)n>.
This can be recognized [2,6] as the lowest order term of
a dilute expansion of the ground-state energy density for
d > 2. Thus the correct low-dimensional local density
theory will instead have the ground-state energy density
of the d = 2 dilute Bose system [5,6], which is not pro-
portional to n?.

A rigorous derivation of the form of the energy density
appropriate to low dimensionality was given in Ref. [6];
it can be understood as follows. Let us write the inter-
particle interaction in the form U(r) = uo8¢(r) where u
is the amplitude of the interparticle repulsion, and the
notation 65(1‘) denotes any well-localized function that
transforms into the mathematical Dirac 6 function when
the range of interaction a — 0. Assume the interpar-
ticle interaction is so strong that each particle is local-
ized within a cage formed by its neighbors. In the dilute
limit na? < 1 the size of this cage can be estimated as
R ~ n~ Y4 the ground-state energy per particle follows
from the uncertainty principle as i2/mR? ~ h*n*4/m,
and the ground-state energy density which would go into
the energy functional is given by i2n?*®/4 /mm_ The strong
interaction assumption is valid if the interaction energy
per particle, estimated as uo/R?, is much bigger than the
ground-state energy per particle due to the zero-point mo-
tion, i.e., uo/R? > K*/mR?. This can be justified in the
dilute limit R — o below two dimensions, and the con-
dition of the strong coupling limit can then be written as
F2n@=9/d [my, < 1. To conclude, as space dimension-
ality decreases, it becomes increasingly harder for the re-
pulsive particles to avoid collisions. Thus the correlations
dominate, and for d < 2 the quartic nonlinearity |®|* in
Eq. (1) should be replaced by |®|*?+9/4  The effect is
strongest in one dimension where we will have a |®|°
interaction.

In one dimension the dilute limit na << 1 and strong
coupling condition /%n/muy << 1 are automatically satis-
fied for a gas of point, impenetrable bosons (¢ = 0 and
ug — ) which are equivalent to a gas of free fermions
[7,8] with energy density 72/%n3/6m. Therefore, for the
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practically important case of one dimension, the system of
Egs. (1) and (2) is modified to
LT
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Similarly for the marginal two-dimensional case we are
led to the conclusion that in the dilute limit [5,6] a the-
ory replacing the GP approximation starts from the energy
functional
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Ignoring the logarithmic factor will perhaps suffice for
many practical purposes; then (5) is precisely of the GP
form. A form similar to (5) has appeared previously [9].

As with the GP approximation, the theory based on
Egs. (3)—(5) plays a role similar to that of hydrodynam-
ics in the theory of fluids. For example, going to the am-
plitude and phase representation of Eq. (4) we recover the
equations of hydrodynamics for an ideal liquid with the
density dependence of pressure appropriate to that of di-
lute bosons in one dimension. This justifies the use of the
two-component (complex) order parameter field as the hy-
drodynamical description requires two fields: density and
velocity. The fact that BEC does not occur for d = 2 in
uniform systems [2] is an irrelevant issue as the interac-
tions alone lead to the coherence phenomena which we
are describing by a single complex order parameter. For
example, the coherence phenomena are well known to ex-
ist in one-dimensional quantum liquids [10,11] despite the
lack of true BEC. For the uniform ground state the de-
scription based on (3) also includes the “harmonic liquid”
theory [11], but generally goes beyond it. Because of the
boson-fermion equivalence in one dimension [7,11], the
theory based on Eqgs. (3) and (4) is also applicable to a di-
lute gas of one-dimensional fermions.

A detailed analytical and numerical study of the one- and
two-dimensional cases will be given in a longer publication
[12]; hereafter we restrict ourselves to only the salient
features of one dimension where the deviations from the
GP theory are largest.

Density profiles in external potentials.—The stationary
solution to Eq. (4) defined via ®(x, 1) = ¢ (x)e *#!/7 can
be found by solving

d? 2m
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subject to the condition of fixed total particle number N =
[ dx ¢* which determines the chemical potential w. For

an external potential that varies slowly on the scale of
the interparticle spacing the derivative term in (6) can be
ignored: this gives the density profile in the Thomas-Fermi
(TF) approximation:

nre(x) = ¢dp = 2mlu — VOB /7h, (D)

with the density being zero in the classically forbidden
region u < V(x). For the practically important case of a
harmonic trap, V = mw?x?/2, and the density profile is
elliptical:

nre(x) = [Qmp — m*w*x)]'?/7h. (8)

The chemical potential is given by utr = hwN, the den-
sity in the center of the trap is n1r(0) = 2mhiwN)"2/mh,
and the size of the trapped “condensate” is 2(2AN /mw)'/2.

The accuracy of these predictions can be tested against
the exact solution of a dilute system of bosons with re-
pulsive interactions: an ideal candidate being a system
of point impenetrable bosons. The boson-fermion equiva-
lence [7] implies that in the many-body system the single-
particle energy levels E, = fiw(n + 1/2) of the harmonic
oscillator are occupied in a fermionic fashion, i.e., with no
more than one particle per state. The chemical potential is
then given by u = Aiw(N + 1/2), which for large N ap-
proaches our TF result utr = hwN. Similarly, the den-
sity profile can be computed as a sum of squares of the
single-particle wave functions:

IR =

nW) = i 2 g HRE/Dep(=x/1). )

where H; are Hermite polynomials and [ = (/i/mw)'/2.
The density distribution (9) is plotted in Fig. 1 where
it is compared with (a) the numerical solution of (6) with
V = mw?*x?/2 and (b) the TF result (8), for different num-
bers of particles. The main flaw of the theory based on (6)
is that it does not reproduce density oscillations due to al-
gebraic ordering of the particles. This is not surprising as
(akin to the GP approximation) the discreteness of the par-
ticles, which is responsible for the density oscillations, is
ignored. Otherwise, the agreement between the approxi-
mate and the exact profiles is very good; in the limit of
large particle number the differences become impercepti-
ble. These results can be directly tested experimentally; as
a comparison we note that the one-dimensional GP theory

a) X b) X

FIG. 1. The density profile (9) plotted for particle numbers
N = 4,9,16,25 in units mw /hA = 1. The nonoscillating curves
correspond to (a) the numerical solution of (6) and (b) the TF
result (8).
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in the TF approximation predicts [2] ntg ~ w — V(x),  where the chemical potential u = 72h2¢3 /2m is selected
which is quite distinct from (7), and agrees very poorly  so that the particle density ny = qbg is constant at infinity.

with the exact result. In dimensionless variables f = ¢/dg, y = mnox, 7 =
Solitons.—Gray solitons [13] have been recently cre- Wzn%ﬁt/ m, Eq. (10) simplifies to

ated and their dynamics was observed in cigar-shaped con-

densates of 8’Rb vapors [14], which makes it important to 2i0,f = _aef + (If1* = Df. (11)
understand solitonic properties of the system (3) and (4). ’

Let us look for solutions to (4) (with V' = 0) of the form We will be looking for a localized traveling wave solu-
®(x,1) = ¢p(x,t)e /" The function ¢ then obeys the  tion [15] to (11) of the form f(y,7) = f(y — B7) where
equation the dimensionless velocity B is measured in units of the

2 sound velocity ¢ = 7 /ing/m. This problem can be solved
ihd,p = m [—02¢ + 7w*(|* — ¢g)#p],  (10)  exactly. The results are conveniently described in terms of
m the amplitude A and phase ¢ of the dimensionless order

| parameter f = Ae':

31— B%)

AP =1~
2+ (1+ 3BY)Pcosh2(1 — B)12(y — B7)]
- (12)
| B3B%/A%) — 1
260 = N = |-
0 cosS |:(1+3,32)1/2
The spatial behavior given by (12) is shown in Fig. 2. [
The amplitude in (12) describes a moving depression The solution (12) bears some similarity with the one-
(particle deficit) with the minimal value at the soliton cen- dimensional soliton of the GP theory [13]; the main quali-
ter given by A%(0) = (1 + 38%)!/2 — 1. The soliton ex- tative difference (seen after recovering the original units)

ists only for 8 < 1 (i.e., the soliton velocity cannot exceed  is that in the dilute limit the soliton size is of order 1/(1 —

the speed of sound); for 8 = 1 Eq. (12) gives the uniform  32)"/2n independent of the amplitude of the interparticle

result A2 = 1. On the other hand, for B = 0(.e., a vortex, repulsion [16].

or dark soliton [13]) the minimal value of the amplitude at General methods [13] can be used to compute the soliton

the soliton center drops to zero. energy £ and momentum P. For their dimensionless coun-
The phase expressed in (12) varies rapidly in the vicin-  terparts € = 2mE/mw?h*n} and P = P/wliny we find

ity of the amplitude dip, staying approximately constant

far away from it. The total phase shift across the soliton € = ﬁ (1 - B2 111{2 + [3(1 — pH]Y 2}

can be found as A9 = cos '[(382 — 1)/(1 + 3B82)/2]. T (1 + 3B2)1/2 ’

It is a continuous function of the soliton velocity vary-

ing between —7r (when 8 = 0) and zero (when 8 = 1). _ B 1 S 3B2-1
Antisolitons may be defined as having opposite signs of P=- 1 - B? €t [(1 + 3B2)1/2 }
df/dy, and there are no constraints on Af for the open (13)

line or ring geometries (provided the number of solitons
matches the number of antisolitons). However, if there is
an imbalance of solitons and antisolitons in the ring geom-
etry, then the uniqueness of the order parameter f(y, 7)
implies that A is a fraction of 277 for any excess soliton;
this will in turn mean that the excess soliton velocity is

The dependencies €(8) and P (B) parametrically define
the soliton dispersion law €(Z2’) which should be identified
[17] with the “hole” branch of the elementary excitations
spectrum [18].

To assess the accuracy of e(?P) given in (13) we com-
pare it with the exact result of Lieb [18] for the system

quantized. of &-interacting bosons in the dilute limit /%n/muy << 1:

10—t ) . €exact(P) = 2|P| — P2, for |P| = 1. Since the veloc-

7 ity B in (13) varies between zero and unity, the momen-

0.8 0.5r : tum (which we choose to be positive) computed from (13)

A2 0.6¢ 1o varies between unity and zero in correspondence with the

0.4} ] 0r ] exact result. It is straightforward to show that for P < 1

_0.5t the elimination of 8 in (13) leads to € = 27, which is

0.2r ] ’ again in agreement with the exact result. The behavior

00— S €(?P) implied by (13) in the vicinity of the end point of

4 -2 02 4 42 0 2 4 the spectrum P = 1 is qualitatively similar, and quanti-

p qualitatively ar, and qua

y y tatively close to the exact dependence. To illustrate these

FIG. 2. The density A% and the phase 6, for the moving soliton statements we have plotted the dispersion law (13) in Fig. 3
Eq. (12) with 8 = 1/2. against the exact result.
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FIG. 3. The spectrum parametrized by (13) (lower curve) com-
pared to the exact result of Lieb (upper curve).

Superflow.—The dimensionless current density is given
by j = A%9 40, and below we look for solutions with fixed
given current j (i.e., the steady state) and 9,A = 9,6 = 0.
Substituting f = Ae’ and j = A%2d6/dy into (11), and
imposing fixed chemical potential, we find

A _ 5
W:EJFA —A. (14)

In the spatially uniform state Z% = 0, and one finds the
dimensionless amplitude A% =[1 + (1 — 4;2)/2]/2,
which implies that superflow reduces the amplitude of the
order parameter. The uniform solution and thus super-
fluidity cease to exist above the critical flow j. = 1/2
when the amplitude drops down to its minimal value
AS = 271/4 These results imply that the critical velocity
for superfluidity in the original units is ¢/+/2.

Equation (14) also has an immobile well-localized solu-
tion in the form of a dip of the order parameter; far away
from the dip the amplitude recovers to its uniform value.
The dip solution is closely related to the soliton previously
discussed. Indeed, in the reference frame moving with
the flow, the dip solution is moving and thus is identical
to a soliton. The functional form of the dip can be de-
duced from (12) by replacing 3 by j/A%, A by A/A, and
(y — B7) by yA2. The dip solution disappears altogether
for j > j..

Self-similar solutions.—The results derived so far have
their counterparts in the context of the one-dimensional GP
approximation. However, the theory based on Egs. (3) and
(4) allows self-similar solutions (even in the presence of an
external harmonic potential) which do not exist in the one-
dimensional GP theory [19]. Unfortunately, we have no
space here to enter into details of the analysis.

We have performed direct numerical integration of the
nonlinear equation (4), and have confirmed the existence
of both the similarity solutions and the moving trains of

solitons with quantized velocity, with amplitude and phase
as given by (12). More details will be given in a future
publication [12].

In conclusion, we have presented a new continuum
description of dilute Bose liquids appropriate for low
dimensional systems. This description goes beyond the
mean-field approximation implicit in the GP theory. It is
our hope that the results we have derived from our theory
will be testable in BEC experiments in the near future.
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