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Low-Dimensional Bose Liquids: Beyond the Gross-Pitaevskii Approximation
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The Gross-Pitaevskii approximation is a long-wavelength theory widely used to describe a variety of
properties of dilute Bose condensates, in particular trapped alkali gases. We point out that for short-
ranged repulsive interactions this theory fails in dimensions d # 2, and we propose the appropriate
low-dimensional modifications, which have a universal form. For d � 1 we analyze density profiles in
confining potentials, superfluid properties, solitons, and self-similar solutions.

PACS numbers: 05.30.Jp, 03.75.Fi, 32.80.Pj
Experimental observation of Bose-Einstein condensa-
tion (BEC) in trapped alkali vapors [1] has ushered in a new
era of superlow temperature physics. The Gross-Pitaevskii
(GP) mean-field theory [2] has proven to be an indispens-
able tool in both analyzing and predicting the outcome of
experiments.

With rapid progress in the experimental exploration of
BEC systems it is reasonable to anticipate that effectively
one- and two-dimensional systems are realistic prospects
in the near future [3]. For example, high aspect ratio cigar-
shaped traps approximating quasi-one-dimensional BEC
systems are already available experimentally [4]. From the
theoretical viewpoint low-dimensional systems are rarely
well represented by mean-field theories, which leads one
to question the validity of the GP theory in one and two
dimensions. In this paper we shall show that, indeed,
the physics of dilute Bose systems requires a fundamental
modification of the GP theory in low dimensions d # 2.

The GP theory is a quasiclassical (or mean-field) ap-
proximation which replaces the bosonic field operator by
a classical order parameter field F�r, t�. For short-ranged
interactions the interparticle potential U�r� is replaced by
gdd�r�, where g is the pseudopotential. Then for a system
of bosons of mass m in an external potential V one arrives
at the energy functional and the equation of motion for F

of the following form:

FGP �
Z

ddr

∑
h̄2

2m
j=Fj2 1 V �r�jFj2 1

g
2
jFj4

∏
(1)

and

ih̄≠tF �
dFGP

dF�
�

∑
2

h̄2

2m
=2 1 V �r� 1 gjFj2

∏
F .

(2)
The GP equations (1) and (2) are widely used to compute
a variety of properties of Bose systems [2].

The GP approximation is a long-wavelength theory rely-
ing on the concept of the pseudopotential to account for in-
terparticle interactions. However, for repulsive bosons the
canonical pseudopotential vanishes in two dimensions [5],
implying that an essential modification of the GP theory is
necessary for d # 2. To see how to modify the theory, it
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is useful to rewrite the last integrand of (1) in terms of the
particle density n � jFj2, so that � g�2�jFj4 � � g�2�n2.
This can be recognized [2,6] as the lowest order term of
a dilute expansion of the ground-state energy density for
d . 2. Thus the correct low-dimensional local density
theory will instead have the ground-state energy density
of the d # 2 dilute Bose system [5,6], which is not pro-
portional to n2.

A rigorous derivation of the form of the energy density
appropriate to low dimensionality was given in Ref. [6];
it can be understood as follows. Let us write the inter-
particle interaction in the form U�r� � u0dd

a �r� where u0
is the amplitude of the interparticle repulsion, and the
notation dd

a �r� denotes any well-localized function that
transforms into the mathematical Dirac d function when
the range of interaction a ! 0. Assume the interpar-
ticle interaction is so strong that each particle is local-
ized within a cage formed by its neighbors. In the dilute
limit nad ø 1 the size of this cage can be estimated as
R � n21�d , the ground-state energy per particle follows
from the uncertainty principle as h̄2�mR2 � h̄2n2�d�m,
and the ground-state energy density which would go into
the energy functional is given by h̄2n�21d��d�m. The strong
interaction assumption is valid if the interaction energy
per particle, estimated as u0�Rd , is much bigger than the
ground-state energy per particle due to the zero-point mo-
tion, i.e., u0�Rd ¿ h̄2�mR2. This can be justified in the
dilute limit R ! ` below two dimensions, and the con-
dition of the strong coupling limit can then be written as
h̄2n�22d��d�mu0 ø 1. To conclude, as space dimension-
ality decreases, it becomes increasingly harder for the re-
pulsive particles to avoid collisions. Thus the correlations
dominate, and for d # 2 the quartic nonlinearity jFj4 in
Eq. (1) should be replaced by jFj2�21d��d . The effect is
strongest in one dimension where we will have a jFj6

interaction.
In one dimension the dilute limit na ø 1 and strong

coupling condition h̄2n�mu0 ø 1 are automatically satis-
fied for a gas of point, impenetrable bosons (a � 0 and
u0 ! `) which are equivalent to a gas of free fermions
[7,8] with energy density p2h̄2n3�6m. Therefore, for the
© 2000 The American Physical Society
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practically important case of one dimension, the system of
Eqs. (1) and (2) is modified to

F �
h̄2

2m

Z
dx

∑Ç
dF

dx

Ç2
1

2m
h̄2 V �x� jFj2 1

p2

3
jFj6

∏
(3)

and

ih̄≠tF �
h̄2

2m

∑
2≠2

x 1
2m
h̄2 V �x� 1 p2jFj4

∏
F . (4)

Similarly for the marginal two-dimensional case we are
led to the conclusion that in the dilute limit [5,6] a the-
ory replacing the GP approximation starts from the energy
functional

F �
h̄2

2m

Z
d2r

∑
j=Fj2 1

2m
h̄2 V �x� jFj2

1
4p2

j ln�jFj2a2�j
jFj4

∏
. (5)

Ignoring the logarithmic factor will perhaps suffice for
many practical purposes; then (5) is precisely of the GP
form. A form similar to (5) has appeared previously [9].

As with the GP approximation, the theory based on
Eqs. (3)–(5) plays a role similar to that of hydrodynam-
ics in the theory of fluids. For example, going to the am-
plitude and phase representation of Eq. (4) we recover the
equations of hydrodynamics for an ideal liquid with the
density dependence of pressure appropriate to that of di-
lute bosons in one dimension. This justifies the use of the
two-component (complex) order parameter field as the hy-
drodynamical description requires two fields: density and
velocity. The fact that BEC does not occur for d # 2 in
uniform systems [2] is an irrelevant issue as the interac-
tions alone lead to the coherence phenomena which we
are describing by a single complex order parameter. For
example, the coherence phenomena are well known to ex-
ist in one-dimensional quantum liquids [10,11] despite the
lack of true BEC. For the uniform ground state the de-
scription based on (3) also includes the “harmonic liquid”
theory [11], but generally goes beyond it. Because of the
boson-fermion equivalence in one dimension [7,11], the
theory based on Eqs. (3) and (4) is also applicable to a di-
lute gas of one-dimensional fermions.

A detailed analytical and numerical study of the one- and
two-dimensional cases will be given in a longer publication
[12]; hereafter we restrict ourselves to only the salient
features of one dimension where the deviations from the
GP theory are largest.

Density profiles in external potentials.—The stationary
solution to Eq. (4) defined via F�x, t� � f�x�e2imt� h̄ can
be found by solving

d2f

dx2 1
2m
h̄2 �m 2 V �x��f 2 p2f5 � 0 , (6)

subject to the condition of fixed total particle number N �R
dx f2 which determines the chemical potential m. For
an external potential that varies slowly on the scale of
the interparticle spacing the derivative term in (6) can be
ignored: this gives the density profile in the Thomas-Fermi
(TF) approximation:

nTF�x� � f2
TF � �2m�m 2 V �x���1�2�p h̄ , (7)

with the density being zero in the classically forbidden
region m , V �x�. For the practically important case of a
harmonic trap, V � mv2x2�2, and the density profile is
elliptical:

nTF�x� � ��2mm 2 m2v2x2��1�2�p h̄ . (8)

The chemical potential is given by mTF � h̄vN , the den-
sity in the center of the trap is nTF�0� � �2mh̄vN�1�2�p h̄,
and the size of the trapped “condensate” is 2�2h̄N�mv�1�2.

The accuracy of these predictions can be tested against
the exact solution of a dilute system of bosons with re-
pulsive interactions: an ideal candidate being a system
of point impenetrable bosons. The boson-fermion equiva-
lence [7] implies that in the many-body system the single-
particle energy levels En � h̄v�n 1 1�2� of the harmonic
oscillator are occupied in a fermionic fashion, i.e., with no
more than one particle per state. The chemical potential is
then given by m � h̄v�N 1 1�2�, which for large N ap-
proaches our TF result mTF � h̄vN . Similarly, the den-
sity profile can be computed as a sum of squares of the
single-particle wave functions:

n�x� �
1

�pl�1�2

N21X
k�1

1
2kk!

H2
k �x�l� exp�2x2�l2� , (9)

where Hk are Hermite polynomials and l � �h̄�mv�1�2.
The density distribution (9) is plotted in Fig. 1 where

it is compared with (a) the numerical solution of (6) with
V � mv2x2�2 and (b) the TF result (8), for different num-
bers of particles. The main flaw of the theory based on (6)
is that it does not reproduce density oscillations due to al-
gebraic ordering of the particles. This is not surprising as
(akin to the GP approximation) the discreteness of the par-
ticles, which is responsible for the density oscillations, is
ignored. Otherwise, the agreement between the approxi-
mate and the exact profiles is very good; in the limit of
large particle number the differences become impercepti-
ble. These results can be directly tested experimentally; as
a comparison we note that the one-dimensional GP theory

n n

x xa) b)

FIG. 1. The density profile (9) plotted for particle numbers
N � 4, 9, 16, 25 in units mv�h̄ � 1. The nonoscillating curves
correspond to (a) the numerical solution of (6) and (b) the TF
result (8).
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in the TF approximation predicts [2] nTF � m 2 V �x�,
which is quite distinct from (7), and agrees very poorly
with the exact result.

Solitons.—Gray solitons [13] have been recently cre-
ated and their dynamics was observed in cigar-shaped con-
densates of 87Rb vapors [14], which makes it important to
understand solitonic properties of the system (3) and (4).
Let us look for solutions to (4) (with V � 0) of the form
F�x, t� � f�x, t�e2imt� h̄. The function f then obeys the
equation

ih̄≠tf �
h̄2

2m
�2≠2

xf 1 p2�jfj4 2 f4
0�f� , (10)
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where the chemical potential m � p2h̄2f
4
0�2m is selected

so that the particle density n0 � f
2
0 is constant at infinity.

In dimensionless variables f � f�f0, y � pn0x, t �
p2n2

0 h̄t�m, Eq. (10) simplifies to

2i≠tf � 2≠2
yf 1 �jfj4 2 1�f . (11)

We will be looking for a localized traveling wave solu-
tion [15] to (11) of the form f� y, t� � f� y 2 bt� where
the dimensionless velocity b is measured in units of the
sound velocity c � p h̄n0�m. This problem can be solved
exactly. The results are conveniently described in terms of
the amplitude A and phase u of the dimensionless order
parameter f � Aeiu:
A2 � 1 2
3�1 2 b2�

2 1 �1 1 3b2�1�2cosh�2�1 2 b2�1�2� y 2 bt��

2u � cos21

"
�3b2�A2� 2 1
�1 1 3b2�1�2

#
.

(12)
The spatial behavior given by (12) is shown in Fig. 2.
The amplitude in (12) describes a moving depression

(particle deficit) with the minimal value at the soliton cen-
ter given by A2�0� � �1 1 3b2�1�2 2 1. The soliton ex-
ists only for b , 1 (i.e., the soliton velocity cannot exceed
the speed of sound); for b � 1 Eq. (12) gives the uniform
result A2 � 1. On the other hand, for b � 0 (i.e., a vortex,
or dark soliton [13]) the minimal value of the amplitude at
the soliton center drops to zero.

The phase expressed in (12) varies rapidly in the vicin-
ity of the amplitude dip, staying approximately constant
far away from it. The total phase shift across the soliton
can be found as Du � cos21��3b2 2 1���1 1 3b2�1�2�.
It is a continuous function of the soliton velocity vary-
ing between 2p (when b � 0) and zero (when b � 1).
Antisolitons may be defined as having opposite signs of
du�dy, and there are no constraints on Du for the open
line or ring geometries (provided the number of solitons
matches the number of antisolitons). However, if there is
an imbalance of solitons and antisolitons in the ring geom-
etry, then the uniqueness of the order parameter f� y, t�
implies that Du is a fraction of 2p for any excess soliton;
this will in turn mean that the excess soliton velocity is
quantized.

FIG. 2. The density A2 and the phase u, for the moving soliton
Eq. (12) with b � 1�2.
The solution (12) bears some similarity with the one-
dimensional soliton of the GP theory [13]; the main quali-
tative difference (seen after recovering the original units)
is that in the dilute limit the soliton size is of order 1��1 2

b2�1�2n0 independent of the amplitude of the interparticle
repulsion [16].

General methods [13] can be used to compute the soliton
energy E and momentum P. For their dimensionless coun-
terparts e � 2mE�p2h̄2n2

0 and P � P�p h̄n0 we find

e �

p
3

p
�1 2 b2� ln

Ω
2 1 �3�1 2 b2��1�2

�1 1 3b2�1�2

æ
,

P � 2
b

�1 2 b2�
e 1

1
p

cos21

∑
3b2 2 1

�1 1 3b2�1�2

∏
.

(13)

The dependencies e�b� and P �b� parametrically define
the soliton dispersion law e�P � which should be identified
[17] with the “hole” branch of the elementary excitations
spectrum [18].

To assess the accuracy of e�P � given in (13) we com-
pare it with the exact result of Lieb [18] for the system
of d-interacting bosons in the dilute limit h̄2n�mu0 ø 1:
eexact�P � � 2jP j 2 P 2, for jP j # 1. Since the veloc-
ity b in (13) varies between zero and unity, the momen-
tum (which we choose to be positive) computed from (13)
varies between unity and zero in correspondence with the
exact result. It is straightforward to show that for P ø 1
the elimination of b in (13) leads to e � 2P , which is
again in agreement with the exact result. The behavior
e�P � implied by (13) in the vicinity of the end point of
the spectrum P � 1 is qualitatively similar, and quanti-
tatively close to the exact dependence. To illustrate these
statements we have plotted the dispersion law (13) in Fig. 3
against the exact result.
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FIG. 3. The spectrum parametrized by (13) (lower curve) com-
pared to the exact result of Lieb (upper curve).

Superflow.—The dimensionless current density is given
by j � A2≠yu, and below we look for solutions with fixed
given current j (i.e., the steady state) and ≠tA � ≠tu � 0.
Substituting f � Aeiu and j � A2du�dy into (11), and
imposing fixed chemical potential, we find

d2A
dy2 �

j2

A3 1 A5 2 A . (14)

In the spatially uniform state d2A
dy2 � 0, and one finds the

dimensionless amplitude A4
` � �1 1 �1 2 4j2�1�2��2,

which implies that superflow reduces the amplitude of the
order parameter. The uniform solution and thus super-
fluidity cease to exist above the critical flow jc � 1�2
when the amplitude drops down to its minimal value
Ac

` � 221�4. These results imply that the critical velocity
for superfluidity in the original units is c�

p
2.

Equation (14) also has an immobile well-localized solu-
tion in the form of a dip of the order parameter; far away
from the dip the amplitude recovers to its uniform value.
The dip solution is closely related to the soliton previously
discussed. Indeed, in the reference frame moving with
the flow, the dip solution is moving and thus is identical
to a soliton. The functional form of the dip can be de-
duced from (12) by replacing b by j�A4

`, A by A�A`, and
� y 2 bt� by yA2

`. The dip solution disappears altogether
for j . jc.

Self-similar solutions.—The results derived so far have
their counterparts in the context of the one-dimensional GP
approximation. However, the theory based on Eqs. (3) and
(4) allows self-similar solutions (even in the presence of an
external harmonic potential) which do not exist in the one-
dimensional GP theory [19]. Unfortunately, we have no
space here to enter into details of the analysis.

We have performed direct numerical integration of the
nonlinear equation (4), and have confirmed the existence
of both the similarity solutions and the moving trains of
solitons with quantized velocity, with amplitude and phase
as given by (12). More details will be given in a future
publication [12].

In conclusion, we have presented a new continuum
description of dilute Bose liquids appropriate for low
dimensional systems. This description goes beyond the
mean-field approximation implicit in the GP theory. It is
our hope that the results we have derived from our theory
will be testable in BEC experiments in the near future.
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