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Rheological Evidence for a Dynamical Crossover in Polymer Melts
via Nonequilibrium Molecular Dynamics
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A certain “critical” molecular weight controls rheological properties of the multibead finitely extensible
nonlinear elastic (FENE) chain model polymer melt. The rheological crossover manifests itself in a
change of power law behavior for the viscous properties at a critical number of beads per chain Nc �
100 6 10. This finding confirms a newly proposed relationship between dimensionless critical weight,
characteristic length, and flexibility which we obtain as a side result. Results further suggest that the
entanglement molecular weight Ne for the flexible FENE chain model could be comparable in size or
even larger than its critical molecular weight Nc.

PACS numbers: 83.10.Nn, 83.50.Ax
A dense collection of repulsive linear chains made
of mass points (beads) interconnected by finitely ex-
tensible nonlinear elastic (FENE) springs serves as a
suitable coarse-grained model for polymer melts. The
“multibead FENE model polymer” investigated in this
study predicts many of the experimentally observed static
and dynamic—in particular rheological—properties of
polymer melts. At low and intermediate chain lengths,
the nonlinear viscoelastic and structural properties such
as viscosities and scattering patterns are in accordance
with experimental results for shear and elongational
flows [1–3]. Because of the computational demands
caused by the strong increase of relaxation time with
molecular weight (M) no proof had been presented so
far that (or where) the basic multibead chain model
also exhibits the experimentally observed rheological
crossover. The crossover manifests itself in a change
of power law for the zero shear viscosities at a certain
M. For the particular system studied here the critical
chain length is Nc � 100 6 10. A generalization of this
result to polymer melts with arbitrary characteristics is
given below.

“Topological” constraints hinder the motion of long
polymers in melts and concentrated solutions [4]. This
is well accepted since the works of Treloar 1940 on
uncrosslinked rubbery polymers, of Bueche 1952 on
entanglement networks, Edwards 1967 on knots formed
by macromolecules, de Gennes 1971 on “reptation,” and
Doi and Edwards 1978 on the “tube model.” Experimental
evidence for topological constraints is rich, cf. [5]. In
view of experimental results on relatively stiff molecules
[6]the coupling should involve looping of chains around
each other in their long-range contour [4]. There is
ongoing discussion about a “microscopic” definition of
“entanglement” [4,7,8]. Below, we report about scaling
behaviors for the critical and entanglement M which help
to interpret such a quantity.

Based on the measurement of single chain diffusion
coefficients for the FENE model polymer melt obtained
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from equilibrium molecular dynamics (MD) simulations
[9] with up to N � 400 beads per chain a “dynamical”
crossover has been already observed. A characteristic
length N � 35 was found which marks the crossover
between “Rouse” to “reptation” diffusion regimes, for
which the diffusion coefficients scale as D ~ 1�N and
D ~ 1�N2, respectively. For the same model with 200
beads, Gao and Weiner [10] investigated the atomic
mobility and found that intrachain beads of relatively low
mobility tended to cluster in groups along the chain. Al-
though the clustering introduces graininess in mobility and
a possible new length scale their search for entanglements
didn’t lead to conclusive statements from equilibrium
simulations. So far, up to April 2000, a characteristic
slowdown of the diffusivity had been reported from
simulations. The proof, that, and where a rheological
crossover (at Nc) is present in the same flexible chain
model was missing and will be given in this work. The
plateau modulus G0

N , from which the entanglement Me

can be rigorously deduced [11] has been reported for
the FENE model in Ref. [12] for chains up to N � 104

(during revision of our manuscript) from the shear stress
plateau during relaxation after step strain. The reported
value is about a factor 2.3 larger than the one reported for
the dynamical crossover above, and thus much closer to
the one we are going to predict in this study.

The many-chain FENE model allows for a test of
assumptions, in particular for the setup of single-chain
theories, and motivates the required modifications such as
end effects [13]. The original Doi-Edwards tube model
[14] predicts unobserved flow instabilities and the nonex-
istence of over�undershoots in stress reversal experiments.
It has been recently improved by considering “double
reptation,” “chain stretching,” “constraint release,” by
avoiding the “independent alignment approximation” in
order to describe features such as shear thinning, stress
overshoots, recovery, Weissenberg effect as present in
real and FENE polymer melts. The many-chain model
does not rely on such assumptions. It offers insight into
© 2000 The American Physical Society
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the microscopic origin of nonlinear viscoelastic behavior
of polymers.

In order to study the nonlinear viscoelastic properties
of model polymer melts with various degrees of M we
performed nonequilibrium MD (NEMD) simulations of
FENE chains at constant bead number (bulk) density n� �
0.84 in a cubic cell with periodic boundary conditions as
described in [1]. The asterisk marks a quantity given in
dimensionless Lennard-Jones (LJ) units. The repulsive
part of the LJ potential is used to model excluded volume.
For beads which are nearest neighbors along the chain,
an attractive FENE potential: Uij � 20.5k�R�2

0 ln�1 2

�r�
ij�R�

0�2� (for r�
ij # R�

0 , otherwise Uij � `) is added.
The FENE spring k� � 30 chosen is strong enough to
make bond crossings energetically infeasible and small
enough to choose a reasonable integration time step Dt� �
0.008. With the choice for the finite extensibility of the
FENE-spring R�

0 � 1.5 and its strength at constant tem-
perature T� � 1 we follow the works in [1,9]. All of the
simulated systems presented here consist of 3 3 105 beads
arranged in chains with N � 4–400 beads each. A sta-
tionary, planar Couette flow in x direction (gradient in y
direction) with shear rate g � ≠yx�≠y was imposed [1].
Neighbor lists and layered link cells [15] are used to op-
timize the computer routines. In contrast to the standard
procedure for equilibrium simulations, we update the list
of pair dependencies on an upper limit for the increase of
the relative separation of these pairs, not on the absolute
motion of individual particles. Temperature was kept con-
stant by rescaling the magnitude of the peculiar particle
velocities which corresponds to the Gaussian constraint of
constant kinetic energy.

The main contribution to the rheological properties for
the dense system stems from the potential part of the pres-
sure tensor p, being calculated from its tensorial virial ex-
pression and accessible as time average from the calculated
bead trajectories [1]. Each set of measured quantities for
a given set of parameters N , g was simulated (i) by start-
ing up the steady flow with shear rate g . 0 from equili-
brated samples (g � 0) and (ii) by reducing the shear rate
from a highly aligned initial conformation, respectively.
Within the available precision no discrepancies between
the two approaches were found, which only differ (for a
given shear rate and chain length) in the time required to
reach the stationary state. To check the dependence of the
results on the chain length, the samples were depolymer-
ized by cutting the chains during the simulation. Within
errors all the measured quantities relax as desired.

The simulation of long chain polymers became feasible
by using an optimized parallelized NEMD algorithm on
a CRAY T3D parallel machine. The simulation time was
still in the order of 1 year on all (16 to 64) processors,
and was partially performed during the test period of this
machine. The needed CPU time per integration time step
and per particle was �3 3 1027 s per bead and integration
step when typically 64 processors were used in parallel.
Saving computing time was also achieved by using the
efficient sample generators presented in [16].

Rheological behavior.—Rheological properties are ex-
tracted for various shear rates over eight decades from
g� � 1028 to g� � 1 for N � 4–400. For the short
chains (N , 20) a weak shear dilatancy is detected. With
increasing shear rate the trace of the pressure tensor de-
creases due to the intramolecular bond stretching and in
accord with our findings of flow alignment and structure
formation as described for shorter chains in [1]. The non-
Newtonian viscosity h � 2pxy�g is shown for different
chain lengths and rates in Fig. 1(a). All the simulated
samples show shear thinning, and approach a power law
curve h ~ g2n independent of M with the exponent n �
0.60 6 0.10. From the non-Newtonian viscosity h in
Fig. 1(a) the zero rate viscosity h0 was estimated by using
four different extrapolation schemes [1]; see Fig. 1(b).
This quantity clearly exhibits a crossover from a Rouse-
type regime h

�
0 ~ N1 to h

�
0 ~ Nn$3. For the chain lengths

studied it is well represented by the expression h
�
0 �

0.7 N�1 1 Zn21� with a number of “rheologically rele-
vant” entanglements per chain Z � N�Nc and exponent
n � 3.3 6 0.2. The zero rate first viscometric function
C1 ~ �pxx 2 pyy��g2 is found to exhibit a crossover at
the same critical chain length.

For the characteristic relaxation times tN as defined
from the onset of shear thinning at shear rate g � gN �
1�tN we obtain from the NEMD simulations: t

�
10 � 101.6,

t
�
30 � 102.6, t

�
60 � 103.2, t

�
100 � 103.7, i.e., tN ~ N�2

for short chains, in accordance with the Rouse model
predictions. A fit of the data to the expression t

�
N �

c2 N2 1 c3 N3 gives c2 � 3.9 and c3 � 5 3 1023. These
values also allow one to estimate an upper limit for the
characteristic shear rate for longer chains, e.g., t

�
400 . 106

holds. Recently, Aoyagi and Doi [2] simulated shear rates
down to g� � 1024.5 ¿ g

�
400 for exactly the same model

with N � 400, and hence didn’t reach the regime by
which a zero rate viscosity could have been extracted. In
studying long chains with N � 200 400 we have chosen
g� � 1027 , g

�
N for these chains lengths. The crossover

chain length is detected at Nc � 100 6 10 beads.
Further discussion and conclusions.—The commonly

experimentally accessible quantities characterizing a poly-
mer melt at certain temperature are its monomer density r,
average M, monomer mass m, squared end-to-end distance
per monomer b2 � �R2�N 	, the critical and entanglement
weights, Mc � mNc and Me � mNe, respectively, and the
Kuhn length bK . These quantities are related to the bond
length b0 � b2�bK , the characteristic ratio C` � bk�b0,
and the so-called tube diameter dT � b

p
Ne. It has been

suggested recently [17] that both Ne and Nc can be cal-
culated from r, b2 and a fixed length p� � 1029 m. In
order to compare with our simulation result we rewrite this
finding in dimensionless form, which is actually possible
only for Ne and then states: Ne ~ rp3 with a packing
length p � 1��r�R2�M 	� � 1��nb2�. This finding can
1129
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FIG. 1. (a) Non-Newtonian shear viscosity h of the FENE
model vs shear rate g (LJ units) for different chain lengths N .
(b) Zero rate shear viscosity h0 vs chain length.

be also written as (compare the second to the last column
of Table I)

Ne ~ C`�p�bK �2 � �1��n b3��2 , (1)

or ndTb2 � ce with a proportionality coefficient ce �
21 6 2. By analyzing experimental data for Mc, we ob-
1130
tained a new relationship (compare the last column of
Table I)

Nc ~ C3�2
` �p�bK � � 1��n b2

0 b� , (2)

in agreement with the simulation data, and a proportion-
ality coefficient of about c2

e�5 such that C`

p
Ne � 4Nc.

Thus, we are led to the prediction Nenb3
0 , Nc for very

flexible chains with C` , 1.9. The possibility for the ex-
istence of materials with Nc , Ne has been already pro-
posed in [17]. The statement (2) has the advantage upon
a different one proposed for Nc in [17], that it exclusively
contains dimensionless quantities, and thus allows for a
verification by computer simulation. Equations (1) and
(2) tell that Nc is inversely proportional to the number of
monomers in the volume bb2

0 , whereas
p

Ne is inversely
proportional to the number of monomers in the volume b3.

Under equilibrium conditions the simulated FENE
chains exhibit an average bond length b�

0 � 0.97,
b � 1.34b0, hence C` � b2�b2

0 � 1.79 and p�bK �
0.404. Notice that the relationship (1) then predicts a
simulation value for Ne � 120 which is slightly above
the one reported for Nc, a factor of 3–4 above the one
reported for a dynamical crossover in [9], and just by a
factor of 1.5 above the one reported recently from direct
measurement of the relaxation modulus [12].

The simulation has to deal with quantities in terms of
reference units for mass, length, and energy. These have
to be obtained by comparing experiment with simulation
and provide the basic length (s) and energy (e) scale
of the LJ potential as well as the mass (m) of a bead
in solving Newton’s equation. Although some freedom
exists in how to adjust three dimensionless units, an
accepted one is to obtain the reference energy from
the measured temperature eref � TkB, the bead mass
from the real Nc divided by the simulated one, and s2

from the ratio between measured and simulated end-to-
end-distances. Sample data such as reported in Table I
motivate one to obtain reference units for any simulated
quantity for the study of a particular material. For poly-
ethylene (polystyrene), e.g., we deduce a reference length
s � 5.3�9.7� Å, a reference mass m � 42.3�364� g�mol,
and a reference energy e�kB � 443�490� K. From m, s, e
TABLE I. Contains representative experimental data and the simulation data (FENE model) in dimensionless form. All experi-
mental quantities listed are obtained from literature; data for (i) the ratio between squared end-to-end distance and M, (ii) the mass
of a repeating unit, (iii) the critical (from shear flow) and entanglement weights (from plateau modulus), and (iv) bond length b0
(or C`) at temperature T and monomer density r (in g�cm3) of measurement. The last three columns contain universal numbers,
if the proposed scaling is valid.

Polymer T r b0 dT C`
Nc

100 pn1�3 p�bK

p
Ne

NcC`

Ne

C`
� bK

p �2 Nc

C
3�2
`

� bK

p �

PE 443 K 0.78 1.45 Å 40.0 Å 7.6 3.0 0.60 0.17 0.25 453 84
PS 490 K 0.92 1.51 Å 88.6 Å 9.9 7.0 0.92 0.29 0.26 454 81
PaMS 459 K 1.04 1.5.7 Å 76.7 Å 10.5 6.9 0.80 0.22 0.27 451 85
PIB 490 K 0.82 1.62 Å 73.4 Å 5.8 6.1 0.97 0.40 0.18 384 109
PDMS 2.98 K 0.97 1.70 Å 74.6 Å 6.0 6.6 0.92 0.36 0.17 417 119

FENE ´�kB 0.84 m
s3 0.97s 1.3s

p
Ne 1.79 1 0.66 0.40 0.018

p
Ne 3.4Ne 103
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one immediately obtains reference values for any other
quantity such as viscosity, time, stress, etc., by dimen-
sion analysis:

p
me�s2 � 0.07�0.07� mPa s, s

p
m�e �

1.8�9� 3 10212 s, 40(7.5) MPa, 0.46(0.67) g�cm3, 553
(109) GHz. Corresponding reference values for other
polymers are obtained along this procedure. Care has to
be taken when predicting quantities which are sensitive
to the ratio between the systems longest and shortest
relaxation time (tNc �t1) such as the shear viscosity
(proportional) and the shear rate at the onset of shear
thinning (inversely proportional). To illustrate this, for
polystyrene the simulation predicts the correct zero shear
viscosity h0 �

p
me�s2Gh

�
0 � 68 Pa s (at N � Nc)

for a factor G � 104 which happens to be equal to
the ratio of relaxation times t

�
Nc

�t
�
1 � 104. Accord-

ingly, from the onset of shear thinning at shear rate
g� � 1024 obtained for the FENE model at N � Nc

(see Fig. 1) we predict for the real shear rate (for poly-
styrene) gc � g��s�G�21

p
e�m � 1100 s21 which is

again in agreement with experimental findings [11].
As a result, the shear stress at onset of shear thinning
is correctly reproduced without adjustment by G, i.e.,
�hcgc���h�

cg�
c� � 7.5 MPa for polystyrene.

Besides the investigation of rheological behaviors the
simulation of bead trajectories allows us to analyze the
degree of flow-induced orientation of chain segments.
For example, a nonvanishing alignment of chain ends is
observed in accordance with earlier simulation results
for N # 400 [2] and N � 32 [13]. The effect of such
an alignment on viscous properties had been worked out
[13,18] and compared to data obtained in flow birefrin-
gence and small angle neutron scattering experiments. A
discussion about structural properties is beyond the scope
of this paper.

In order to correlate the rheological behavior with the
degree of entanglement one needs a definition of an “en-
tanglement.” We probed the definition for an entanglement
radius as introduced in [8]. It is based on the mutual over-
lap of static contour volumes for pairs of chains. Our result
from this investigation is that there is no visible crossover
in the number of these entanglements or the distribution of
entanglements at N � Nc. We therefore conclude that in
order to keep the idea of localized entanglement, that (i)
this definition does not match the intuitive picture about
entanglements, that (ii) few entanglements lead to a strong
increase in stresses, or that (iii) one has to account for col-
lective effects (correlations in the overlap caused by more
than two chains, by keeping the same concept). Since we
observed the rheological crossover and also reported the
value for Nc, the model should definitely serve to define
entanglements based on the information contained in the
simulated coarse grained phase space of linear polymers.
However, the simple relationships (1) and (2) for Nc, Ne

in terms of purely geometrical quantities p�bK and C`

already reflect the “topological” and inherently nonlocal
origin of entanglement behavior. Another aspect to be re-
called in this context is that in our simulations at low rates
and during relaxation, stress contributions from nonbonded
interactions dominate in the long time regime (where at the
same time the stress-optic rule is valid [3]).

The actual findings underline the relevance of the FENE
model in predicting static, dynamic, and flow behaviors of
real polymers for arbitrary weights. Forthcoming inves-
tigations for long chains far above the critical weight re-
ported here clearly rely on the availability of the necessary
computing power and an ongoing improvement of algo-
rithmic methods.
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