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Changing Shapes in the Nanoworld
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What are the mechanisms leading to the shape relaxation of three-dimensional crystallites? Kinetic
Monte Carlo simulations of fcc clusters show that the usual theories of equilibration, via atomic surface
diffusion driven by curvature, are verified only at high temperatures. Below the roughening temperature,
the relaxation is much slower, kinetics being governed by the nucleation of a critical germ on a facet.
We show that the energy barrier for this step linearly increases with the size of the crystallite, leading
to an exponential dependence of the relaxation time.

PACS numbers: 61.46.+w
Imagine a world where marbles would fuse upon con-
tact, just as two water droplets usually do to minimize
their surface energy and reach their equilibrium configu-
ration. This peculiar behavior is thought to be usual in
the nanoworld, because experiments suggest that objects in
the nanometer range can change shape in reasonable times
[1,2], even if they are solid. This fact is crucial for the pro-
duction and control of nanostructures, since these are gen-
erally obtained in out-of-equilibrium conditions, and are
therefore metastable. The rapid shape relaxation of these
solid particles (which lack the collective atomic diffusion
mechanisms found in the liquid state) is dominated by sur-
face diffusion of their surface atoms. Atomic diffusion
is random (Brownian) but nevertheless generates a global
mass transfer from the high curvature regions (of higher
chemical potential, roughly because atoms have less neigh-
bors there) to the low curvature regions. For very small
objects, surface diffusion is very efficient as a mass trans-
fer mechanism. However, it has to be pointed out that this
whole picture assumes that a continuous description of the
objects is valid, thus allowing the definition of a curvature-
dependent local chemical potential. This is correct as long
as the particle is large enough (to allow defining a chemical
potential) and has a disordered or rough surface (in order
that the chemical potential is differentiable) as for a liq-
uid droplet. Within these assumptions, Herring, Nichols,
and Mullins [3] have shown that this mass transfer mecha-
nism leads to an equilibrium time teq which increases as
the fourth power of the object linear size, which helps in
understanding why macroscopic objects are kinetically al-
lowed to violate thermodynamics with total impunity. It
is important to note that this fourth power law is exten-
sively used to predict equilibrium times or to extract diffu-
sion constants from equilibration rates [2,4]. In this paper,
we address the important question of what happens when
the temperature is below the roughening transition [5], so
that the particle is faceted, a common situation for nano-
structures. There is no general agreement on a continuous
approach in this regime [6], and therefore we use Monte
Carlo simulations to show that the equilibration time of a
faceted particle does not simply vary as predicted above.
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Indeed, we show that, although surface diffusion remains
the important matter transport channel, the equilibration
time is limited by another physical mechanism—facet nu-
cleation. This different physical mechanism leads to a
very different size dependence of teq, limiting the valid-
ity of the continuous law and explaining why nanobjects
might spend much more time in metastable equilibrium
than expected.

Physical model.—We use standard kinetic Monte Carlo
simulations [7] to study the equilibration of unsupported
3D crystallites having a perfect fcc crystalline structure.
Since we are interested only in finding generic laws for
the size dependence of teq (which should not depend on
the details of atom-atom interaction), we have chosen
a very simple energy landscape for atomic motion [8].
We assume that the potential energy Ep of an atom
is proportional to its number i of neighbors, and that
the kinetic barrier Eact for diffusion is also proportional
to the number of initial neighbors, before the jump,
regardless of the final number of neighbors, after the jump
[9]: Eact � 2Ep � i � E where E sets the energy scale
(E � 0.1 eV throughout the paper). Comparing with re-
cent ab initio calculations [10] for the Al(111) surface, we
note that our one-barrier assumption does give the good
order of magnitude of the relative jump frequencies for
the different hopping processes of interest here. We also
exclude any explicit “Ehrlich-Schwoebel” barrier [11] for
atoms hopping around corners. Therefore, the probability
pi per unit time that an atom with i neighbors moves is
pi � n0 exp�2i � E�kbT �, where n0 � 1013 s21 is the
Debye frequency. Thus, our simple kinetic model includes
only one parameter, the ratio E�kBT where kB is the
Boltzmann constant and T the absolute temperature. We
have changed the temperature from 300 K to 800 K, and
the crystallite number of atoms from 700 up to 13 000. The
initial configuration of the clusters is elongated (same ini-
tial aspect ratio [12]), and we stop the relaxation when the
crystallites are close to equilibrium, with an aspect ratio
of 1.2.

Simulation results.—Figure 1 shows a log-log plot of
the relaxation time as a function of the number of atoms
© 2000 The American Physical Society
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FIG. 1. Log-log dependence of the relaxation time as a func-
tion of the size of the crystallites for different temperatures. The
slope of each linear fit is indicated.

in the crystallite. The continuous law predicts a slope of
4�3, which agrees with our simulations only for the highest
temperature, 800 K. As the temperature decreases, the
slope continuously increases, reaching much higher values
than this 4�3. This strong deviation from the continuous
law suggests that an altogether physical mechanism limits
the mass transfer at low temperature. The constant increase
of the exponent is a clue that an exponential dependence
of teq on size and temperature might be present.

To investigate the different behaviors at high and
low temperatures, we examine (Fig. 2) the different
morphologies of the clusters at T � 700 and 300 K.
At high temperatures, many kinks and steps can be
seen, indicating that the continuous approximation for
the curvature might be valid. On the contrary, at low
temperatures the crystallite is fully faceted, with angular
points and edges, making it difficult to define a chemical
potential properly. Moreover, the presence of facets makes
it impossible to transfer atoms from the cluster tips to its
central region by simple atomic diffusion: atoms reaching
the facets do not find a trapping site there and eventually
get back to kinks or steps in the tip regions. This means
that the crystallites can be trapped for long times in these
faceted configurations at low temperatures, as can be
clearly seen in Fig. 3: the cluster progressive approach of
equilibrium is continuous at high temperature and more
steplike at low temperature, indicating that at high tem-
perature atoms continuously attach to the central regions,
whereas some more discontinuous mechanism operates
at low temperatures. A careful examination of low
temperature relaxation pictures suggested that the transi-
tion from one step (i.e., a fully faceted, relatively stable
configuration) to the following (lower) step demands
the nucleation of a germ on a large facet. This germ
grows and eventually forms a new atomic layer, thus
FIG. 2. Morphologies of crystallites of 1728 atoms at two dif-
ferent temperatures: (a) partially rough at 700 K and (b) fully
faceted at 300 K. The shade of each atom depends on its
number of neighbors.

bringing the crystallite closer to equilibrium (see Fig. 3).
Therefore, we expect that the limiting process for mat-
ter transfer at low temperatures is the formation of a
critical nucleus, as suggested from classical nucleation
theory [13].

This physical picture can be partly quantified using the
kinetic theory of nucleation [13]. The time needed to build
the critical nucleus is given by

tnucl ~ exp

µ
DG�

kBT

∂
, (1)

where DG� is the free energy barrier the system has to
cross. We stress that here the situation is more complex
than in the gas-liquid transition, where the atoms forming
the incipient liquid critical cluster all come from the gas
phase, which has a fixed chemical potential. Here, the
tip atoms come from different environments with different
energies (see the different gray shades in Fig. 2), making
it difficult to calculate an average chemical potential. The
111
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FIG. 3. Evolution of the total energy of crystallites as a func-
tion of the time logarithm for a 1728-atom cluster at two tem-
peratures. The arrows in the low temperature curve indicate the
transitions from one faceted configuration to the next. The total
energy is defined as the number of atomic bonds times the bond
energy (E � 0.1 eV). At the end of each curve, the crystallite
has almost reached its equilibrium shape.

key point is, however, to examine whether DG� depends on
the particle size, thus creating an exponential contribution
to the size dependence of teq.

We use a classical umbrella sampling technique [14]
to compute the crystallite free energy as a function of
the number of atoms in the nucleating germ. The um-
brella technique consists of adding a bias potential to the
Hamiltonian of the system to force it to stay in a configura-
tion of interest, even if it is unprobable, as is the case here
for nucleation of the germ. Figure 4 shows that DG� in-
creases for larger crystallites [15], which implies [Eq. (1)]
that the nucleation time (and therefore teq) depends expo-
nentially on the size of the cluster [provided, of course,
that the DG� increase is not logarithmic (see below)].

What are the microscopic mechanisms leading to this
DG� increase with crystallite size? The free energy of a
nucleating germ is given by [13]

DG � 2gline
p

pq 2 qDm , (2)
112
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FIG. 4. Cluster free energy during the formation of a nucle-
ation germ on a facet as a function of the number q of atoms in
the germ. The curves have been obtained at 400 K, for several
cluster sizes which have approximately the same shape, close to
equilibrium (their aspect ratio is indicated in the figure). Clearly,
the free energy barrier for the nucleation of a critical germ be-
comes larger as the crystallite size increases. Each solid curve
is fitted by Eq. (2), allowing one to obtain gline and Dm.

where q is the number of atoms in the germ, gline the line
tension of the germ, and Dm the chemical potential differ-
ence for an atom going from the tip to the facet. We fit
the curves of Fig. 4 by Eq. (2) which gives gline and Dm.
We find gline � 0.129 6 0.013 eV�atom, independent of
the crystallite size. This value is, as expected, close to
the binding energy. To understand the size dependence of
DG� (which comes from Dm), one can, as a first approxi-
mation, treat the tips in a continuous way: assimilating
them to half an ellipsoid, we can estimate the tip curva-
ture. This gives a rough measure of the kink and step
density on the tips, and therefore of the density of more or
less mobile atoms, which can contribute to mass transfer.
With this approximation, and taking arbitrarily the atom
chemical potential to be zero on the facet, we get for the
chemical potential difference for an atom going from the
tip to the facet

Dm � gsurfacek , (3)

where gsurface is the average surface tension on the tip and
k its curvature. Finally, we obtain the free energy barrier
for nucleation:

DG� �
pg

2
line

Dm
�

pg
2
line

gsurface

1
k

. (4)

Figure 5 shows that Eqs. (3) and (4) are in good agreement
with our simulations and give coherent values for gsurface,
close to the binding energy E � 0.1 eV [Eq. (3) gives
0.179 6 0.008 eV atom22 and Eq. (4) leads to 0.175 6

0.035 eV atom22].
The physical picture of nanocrystallite equilibration is

the following: above the roughening temperature, the con-
tinuous approach works well and leads to the classic fourth
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FIG. 5. Dependence of the nucleation barrier (given by the
maximum of the curves in Fig. 4) on the tip curvature k (cal-
culated from the crystallite shape). In the inset, we show the
dependence of Dm (deduced from the fits in Fig. 4) on the cur-
vature k. We fit these two curves by Eqs. (4) and (3), respec-
tively, obtaining gsurface (see text).

power law, the mass transfer being via atomic diffusion
from kinks or steps from the high curvature regions to the
existing kinks or steps of the low curvature region (which
act as traps). Below this temperature, however, large facets
do appear in the low curvature regions and no kinks or steps
are available, preventing the diffusing atoms from sticking
there. Therefore, the route to equilibrium has to involve
nucleation of new atomic planes, which is much more dif-
ficult and needs more time, leading to an exponential in-
crease of tnuc (and therefore teq, which is directly related)
as a function of the cluster size. We actually see no reason
why this picture would not apply to much larger particles,
up to the micrometer range. If defect-free particles of this
size could be produced, below the roughening tempera-
ture they should show perfectly flat facets which would de-
mand the nucleation of a germ for effective mass transfer,
thus generating an exponential-type size dependence, and
probably preventing any experimental observation of the
equilibration [16]. Many open questions remain: the tem-
perature dependence of teq has to be understood, a more
quantitative theory for DG� has to be worked out, and
simulations in other geometries (including also the sub-
strate) would also be of interest.

We acknowledge useful discussions with H. Larralde,
J. L. Barrat, L. Bocquet, J. J. Métois, and J. Krug.

Note added.—After acceptance of our paper, we learned
of a recent paper by Mullins and Rohrer [17] who have,
on a purely macroscopic basis, derived similar expressions
for the nucleation barrier DG�.

[1] C. R. Stoldt et al., Phys. Rev. Lett. 81, 2950 (1998);
A. Ichimiya, Y. Tanaka, and K. Hayashi, Surf. Rev. Lett.
5, 821 (1998).

[2] P. Jensen, Rev. Mod. Phys. 71, 1695 (1999).
[3] C. Herring, Phys. Rev. 82, 87 (1951); F. A. Nichols and

W. W. Mullins, J. Appl. Phys. 36, 1826 (1965);
W. W. Mullins, Metall. Mater. Trans. A 26, 1917
(1995).

[4] M. Drechsler et al., J. Phys. (Paris), Colloq. 50, C8-
223 (1989); H. P. Bonzel and E. E. Latta, Surf. Sci. 76,
275 (1978); G. Jeffers, M. A. Dubson, and P. M. Duxbury,
J. Appl. Phys. 75, 5016 (1994); R. Thouy, N. Olivi-Tran,
and R. Jullien, Phys. Rev. B 56, 5321 (1997); J. Eggers,
Phys. Rev. Lett. 80, 2634 (1998).

[5] A.-L. Barabási and H. E. Stanley, Fractal Concepts in
Surface Growth (Cambridge University Press, Cambridge,
1995); J. Lapujoulade, Surf. Sci. Rep. 20, 191 (1994).

[6] H. Spohn, J. Phys. I (France) 3, 69 (1993).
[7] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput.

Phys. 17, 10 (1975); A. F. Voter, Phys. Rev. B 34, 6819
(1986).

[8] H. Shao, P. C. Weakliem, and H. Metiu, Phys. Rev. B 53,
16 041 (1996); P. Jensen et al., Eur. Phys. J. B 11, 497
(1999).

[9] To accelerate our simulations, only particles with less than
seven neighbors are allowed to move: this approximation
is especially justified at low temperatures, since motion
of atoms with more than six neighbors become very rare
(there are always some particles with six neighbors which
move much faster).

[10] A. Bogicevic, J. Strömquist, and B. Lundqvist, Phys. Rev.
Lett. 81, 637 (1998).

[11] R. L. Schwoebel, J. Appl. Phys. 40, 614 (1969);
R. L. Schwoebel and E. J. Shipsey, J. Appl. Phys. 37, 3682
(1966).

[12] The aspect ratio is defined as the maximum of all the
possible ratios obtained with the gyration radii along the x,
y, and z axes. Actually, it turns out that the initial aspect
ratio is not important since the relaxation rate dramatically
slows down as the crystallite approaches equilibrium (see
Fig. 3), and the equilibration time is dominated by the final
steps.

[13] See, for example, Solids Far from Equilibrium, edited by
C. Godrèche (Cambridge University Press, Cambridge,
1992); A. Pimpinelli and J. Villain, Physics of Crystal
Growth (Cambridge University Press, Cambridge, 1998).

[14] D. Chandler, Introduction to Modern Statistical Mechanics
(Oxford University Press, New York, 1987).

[15] Unfortunately, the umbrella technique gives the free energy
to an additive constant. Moreover, the values obtained for
q0 , 2 are unphysical since no germ exists. Therefore
to be able to compare our curves, we fit them in Fig. 4
with Eq. (2) (which works very well for q0 . 2), and we
extrapolate the fit down to q0 � 0 to find the free energy
value without germ. The additive constant is then fixed for
each curve by choosing DG�q � 0, any N� � 0.

[16] J. J. Métois and J. C. Heyraud, J. Cryst. Growth 57, 487
(1982).

[17] W. W. Mullins and G. S. Rohrer, J. Am. Ceram. Soc. 83,
214 (2000).
113


