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Conductivity of a Clean One-Dimensional Wire
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We study the low-temperature low-frequency conductivity s of an interacting one-dimensional electron
system in the presence of a periodic potential. The conductivity is strongly influenced by conservation
laws, which, we argue, need to be violated by at least two noncommuting umklapp processes to render
s finite. The resulting dynamics of the slow modes is studied within a memory matrix approach, and we
find an exponential increase as the temperature is lowered, s � �Dn�2eT0��NT � close to commensurate
filling M�N , Dn � n 2 M�N ø 1, and s � e�T 0

0�T �2�3
elsewhere.

PACS numbers: 73.50.Bk, 71.10.Pm, 72.10.Bg
The finite-temperature conductivity of a clean one-di-
mensional wire [1] is a fundamental and much studied
question. Clearly the “bulk” conductivity of a wire in the
absence of a periodic potential is infinite even at finite tem-
peratures T . In this case the conductance is independent
of the length of the wire and is determined by the contacts
only. Surprisingly, much less is known about the conduc-
tivity in the presence of umklapp scattering induced by a
periodic potential. There is not even an agreement whether
it is finite or infinite at finite temperatures for generic sys-
tems [2–6]. We shall show that the correct answer emerges
when all relevant (weakly violated) conservation laws are
taken into account. Those conservation laws are exact at
the Fermi surface and are violated by umklapp terms away
from it. We shall study the associated slow modes by
means of a memory matrix formalism able to keep track
of their dynamics. It will allow us to calculate reliably the
low-temperature, low-frequency conductivity.

The topology of the Fermi surface of a 1D metal de-
termines its low-energy excitations. Two well-defined
Fermi points exist at momenta k � 6kF , allowing us to
define left and right moving excitations, to be described
by CL�R,s�"#. We shall include in the fields momentum
modes extending to the edge of the Brillouin zone, usu-
ally omitted in treatments that concentrate on physics very
close to the Fermi surface.

The Hamiltonian, including high-energy processes, is

H � HLL 1 Hirr 1
X̀
n,m

HU
n,m . (1)

HLL is the well-known Luttinger liquid Hamiltonian cap-
turing the low-energy behavior [1],

HLL � yF

Z
�Cy

Lsi≠xCLs 2 C
y
Rsi≠xCRs� 1 g

Z
r�x�2

�
1
2

Z dx
2p

X
n�s,r

yn

µ
Kn�≠xun�2 1

1
Kn

�≠xfn�2

∂
,

yF is the Fermi velocity, g . 0 measures the strength of
interactions, and r � rL 1 rR is the sum of the left- and
right-moving electron densities. In the second line, we
wrote the bosonized [1] version of the Hamiltonian. Here
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ys , yr are the spin and charge velocities, and the interac-
tions determine the Luttinger parameters Kn with ynKn �
yF , yr�Kr � yF 1 g�p , ys�Ks � yF 2 g�p .

The high-energy processes are captured in the subse-
quent terms which are formally irrelevant at low energies
(we consider only systems away from a Mott transition,
i.e., away from half filling). Some of them, however, de-
termine the low-frequency behavior of the conductivity at
any finite T , since they induce the decay of the conserved
modes of HLL (they are “dangerously irrelevant”). We
classify these irrelevant terms with the help of two op-
erators which will play the central role in our discussion.
The first one is the translation operator PT of the right-
and left-moving fields; the second one, J0 � NR 2 NL,
is the difference of the number of right- and left-moving
electrons, and is up to yF , the charge current of HLL:

PT �
X
s

Z
dx�Cy

Rs�2i≠x�CRs 1 C
y
Ls�2i≠x�CLs� ,

(2)

J0 � NR 2 NL �
X
s

Z
dx�Cy

RsCRs 2 C
y
LsCLs� .

(3)

Both PT and J0 are conserved by HLL; their importance for
transport properties is due to the fact that both stay approxi-
mately conserved in any one-dimensional metal (away
from half filling): processes which change J0 are forbidden
close to the Fermi surface by momentum conservation.

The linear combination P0 � PT 1 kFJ0 can be identi-
fied with the total momentum of the full Hamiltonian H
and is therefore also approximately conserved.

We proceed to the classification of the formally irrele-
vant terms in the Hamiltonian. This classification allows
us to select all those terms (actually few in number) that
determine the current dynamics. Hirr includes all terms in
H 2 HLL which commute with both PT and J0, such as
corrections due to the finite band curvature, due to finite-
range interactions and similar terms. We will not need their
explicit form.

The umklapp terms HU
n,m (n,m � 0, 1, . . .) convert n

right movers to left movers (and vice versa) picking up
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lattice momentum m2p�a � mG, and do not commute
with either PT or J0. Leading terms are of the form

HU
0,m � gU

0,m

Z
eiDk0,mx�rL 1 rR�2 1 H.c. , (4)

HU
1,m � gU

1,m

X
s

Z
eiDk1,mxC

y
RsCLsr2s 1 H.c. , (5)

HU
2,m � gU

2,m

Z
eiDk2,mxC

y
R"C

y
R#CL#CL" 1 H.c. , (6)

with momentum transfer Dkn,m � n2kF 2 mG. A
process transferring n . 1 electrons with total spin ns�2
pointing in the z direction can be neatly expressed as

HU
n,m �

gU
n,m,ns

�2pa�n
Z

eiDkn,mxei
p

2�nfr1nsfs� 1 H.c. , (7)

a being a cutoff, of the order of the lattice spacing.
In fermionic variables, the integrand takes the formQn�221

j�0 C
y
R"�x 1 ja�Cy

R#�x 1 ja�CL#�x 1 ja�CL"�x 1

ja� (for ns � 0 and even n).
Note, though, that any single term HU

nm conserves a
linear combination of J0 and PT :

�HU
nm, DknmJ0 1 2nPT � � 0 . (8)

Indeed, a term of the form (7) would appear in a con-
tinuum model without umklapp scattering, but with a
Fermi momentum k̃F � Dknm��2n�. In such a model,
DknmJ0��2n� 1 PT is the total momentum of the system
and therefore conserved. The importance of this simple
but essential conservation law has, to our knowledge, not
been sufficiently realized in previous calculations of the
conductivity. Because of this conservation law, a single
umklapp term can never induce a finite conductivity. At
least two independent umklapp terms are required to lead
to a complete decay of the current. Further, two incom-
mensurate umklapp terms suffice to generate the rest.

To calculate the conductivity, it is necessary to keep
track of the nearly conserved quantities and their relation
to the current. We will develop a description of the slow-
est variables using the Mori-Zwanzig memory functional
[2,7,8]. Approximations within this scheme amount to
short-time expansions. In general, the short-time decay of
a quantity carries little information on its long-time behav-
ior; this, however, is not the case for the slowest variables
in the system, where the short-time and hydrodynamic be-
havior coincide.

To set up the formalism [7], we define a scalar product
�AjB� in the space of operators,

�A�t�jB� �
1
b

Z b

0
dl	A�t�yB�il�
 , (9)

where we use the usual Heisenberg picture with A�t� �
eiHtAe2iHt . We choose a set of “slow” operators
j1, j2, . . . , jN which includes j1 � J, the full current
operator. Standard arguments [7] lead to the electric
conductivity,

s�v,T � � ��M̂�v,T � 2 iv�21x̂�T ��11 . (10)

Here x̂pq � b�jpjjq� is the matrix of the static jpjq sus-
ceptibilities (as usually defined), and M̂ is the matrix of
memory functions given by the projected correlation func-
tions of time derivatives of the slow operators,

M̂pq�v� � b

NX
r�1

µ
≠tjq

Ç
Q

i
v 2 QLQ

Q

Ç
≠tjr

∂
�x̂21�rp .

(11)

The Liouville “super”operator, L, is defined by LA �
�H,A�, and Q is the projection operator on the space per-
pendicular to the slowly varying variables jp :

Q � 1 2
X
pq

jjq�b�x̂21�qp�jpj . (12)

We assumed for simplicity that all jp have the same sig-
nature under time reversal.

The perturbative expansion of the memory matrix M̂
is accompanied by factors 1�v guaranteeing it is always
valid at short times. It is also valid for small frequencies
provided the slowly evolving degrees of freedom are pro-
jected out (by the operator Q). Unlike the conductivity, it
is expected to be a smooth function of the coupling con-
stants which can be perturbatively evaluated.

We first consider a situation where some linear combina-
tions of the jp are conserved by H, in which case an infinite
conductivity is expected. We introduce Pc, the projection
operator on the space of conserved currents, and carry out
the required matrix inversion to find

s�v ! 0,T . 0� � sreg�v,T � 1 i
�x̂x̂21

c x̂�11

v 1 i0
, (13)

where x̂21
c � Pc�Pcx̂Pc�21Pc. Within any simple

(short-time) approximation, sreg�v,T �, as defined above,
is regular (this approximation fails, e.g., if some con-
served current j̃ is not included in j1, . . . , jN ). Hence,
the Drude weight D�T � is finite at finite temperatures,
Res�v ! 0� � 2pD�T �d�v� � p�x̂x̂21

c x̂�11d�v�. It
is determined by the “overlap” of the physical current
operator J with the conserved quantities x1s, s labeling
the conserved currents. Remarkably, our perturbative
approximation is in accord with an exact inequality [5]
for the Drude weight, D�T � $

1
2 �x̂x̂21

c x̂�11. Note that
x̂ can be calculated to an arbitrary degree of precision
around a Luttinger liquid and that the lower bound can be
improved by including more conserved quantities [5].

Now consider the more realistic situation where the pre-
viously conserved currents decay slowly (via umklapp pro-
cesses), in which case a finite conductivity is expected. We
restrict ourselves to the two-dimensional space spanned
by yFJ0 and PT , which we argue have the longest de-
cay rate and dominate the transport. Here we approximate
J � yFJ0 to keep the presentation simple. This affects
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only the high-frequency behavior of the conductivity [3].
There is a large number of other nearly conserved quan-
tities. For example, HLL 1 HU

21, the relevant low-energy
model close to half filling, is integrable and therefore is
characterized by an infinite number of conservation laws.
We can, however, neglect them at low T if our initial model
is not integrable, expecting that practically all conservation
laws are destroyed by (formally irrelevant) terms close to
the Fermi surface leading to decay rates proportional to
some power of T . This is to be compared to J0 and PT

which commute with all scattering processes at the Fermi
surface, leading to exponentially large lifetimes.

We now proceed to calculate the memory matrix. To
leading order in the perturbations, we can replace L in
(11) by LLL � �HLL, .� [9], since ≠tyFJ0 and ≠tPT are
already linear in gU

n,m. As LLLPT � LLLJ0 � 0, there
is no contribution from the projection operator Q. The
memory matrix takes the form
1094
M̂ �
X
nm

Mnm�v,T �

√
y

2
F�2n�2 22nyFDknm

22nyFDknm �Dknm�2

!
x̂21 ,

where

x̂ �

√
2yF�p 0

0 pT2

3 � 1
y3

r
1

1
y3

s
�

!
, (14)

Mnm � �gU
nm�2Mn�Dkn,m, v� �

	F;F
0
v 2 	F;F
0

v�0

iv
.

Here, F � �J0,HU
nm���2n� (for simplicity we drop the in-

dices n,m on F), and 	F;F
0
v is the retarded correlation

function of F calculated with respect to HLL.
The memory function M2 of the 4kF 2 Q process HU

21
was calculated by Giamarchi [2] (not considering the ma-
trix structure of M̂ required by the conservation laws).
Higher umklapps are considered in [3]. For ns � 0 and
even n the memory function due to the term (7) can be
analytically calculated:
Mn�Dk, v� �
2 sin2pKn

r

p4a2n22yr

∑
2paT

yr

∏4Kn
r22 1

iv

3 �B�Kn
r 2 iS1, 1 2 2Kn

r�B�Kn
r 2 iS1, 1 2 2Kn

r� 2 B�Kn
r 2 iS0

1, 1 2 2Kn
r�B�Kn

r 2 iS0
1, 1 2 2Kn

r��

�
a222n

p2G2�2Kn
r�yrT

µ
aDk

2

∂4Kn
r22

e2yrDk��2T �,
where Kn
r � �n�2�2Kr , B�x, y� � G�x�G�y��G�x 1 y�,

and S6 � �v 6 yrDk���4pT �, S0
6 � S6�v � 0�. The

last line is valid for v � 0 and T ø yrDk.
The origin of the exponential factor is as follows: pro-

cesses involving momentum transfer Dk are associated
with initial and final states of energies yjDkj�2, which are
exponentially suppressed. If only charge degrees of free-
dom are involved, y � yr , otherwise y � min�ys , yr� �
ys [9]. For T ø ysDknm, ns . 0 and v � 0, we have

Mn�Dk� �
�aT�yr�n2Kr21�aDk�n2

sKs22

G2�n2
sKs�2�y2

sa2n23 e2ysDk��2T�,

(15)

while, for T ¿ yrDknm, Mn � Tn2Kr1n2
sKs23.

Using the above expressions with only one umklapp
term leads to a finite Drude weight [cf. Eq. (13)],

D�T� �
yrKr

p

1

1 1 T2 2p2n2Kr

3�yrDknm�2 �1 1
y3

r

y3
s

�
, (16)

in accord with the observation that one process HU
nm is not

sufficient to degrade the current.
Only in the presence of a second incommensurate pro-

cess HU
n0m0 is the dc conductivity finite:

s�T � �
�Dknm�2�Mn0m0 1 �Dkn0m0�2�Mnm

p2�nDkn0m0 2 n0Dknm�2 . (17)

Note that the slowest process determines the low-T con-
ductivity. The frequency and temperature dependence of
the conductivity in the case of two competing umklapp
terms is shown in Fig. 1.
The commensurate situation Dknm � 0 requires extra
considerations. Whether the dominant scattering process
Hnm will completely relax the current J depends according
to (13) on the overlap xJPT (�PT ,Hnm� � 0). Using the
continuity equation for the charge, xJPT can be related to
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FIG. 1. The low-frequency behavior of s�v� in the presence
of two umklapp terms for two different T . The dashed lines
are the result one obtains in conventional perturbation theory
neglecting [2] the matrix structure of M̂ and the related con-
servation laws. (g20 � g21 � 1, Kr � 0.7, Ks � 1.3, Dk21 �
21.5Dk20, thick lines T � 0.2, thin lines T � 0.18, v and T
measured in units of yrDk20.) Note that two time scales ap-
pear, each describing the scale on which the associated conser-
vation law is violated. The inset displays the T dependence of
s�v � 0�.
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the deviation Dr � 2Dn�a of the electron density from
commensurate filling with the remarkable identity xJPT �
2Dn�a 1 O�e2beF �. In a 3D lattice of 1D wires, Dn is
fixed by charge neutrality and is T independent; in a single
wire with contacts, Dn varies at low T with Dn�T � �
T2��my3�, where the mass m is a measure of the breaking
of particle-hole symmetry, e.g., due to a band curvature
k2�2m. In this case, it is important to replace Dknm � 0
in Eqs. (16) or (17) by GDn�T �.

Which of the various scattering processes will eventually
dominate at lowest T? At intermediate temperatures, cer-
tainly low-order (small n) scattering events win, being less
suppressed by Pauli blocking. At lower temperature, the
exponential factors in (15) prevail and the processes with
the smallest Dknm are favored. We first analyze the situa-
tion close to a commensurate point kF � GM0��2N0�. The
two dominant processes are HU

N0M0
with DkN0M0 � 0 and

HU
N1M1

with DkN1M1 � 6G�N0 (or N1M0 � 61 modN0).
The integer N1 of order N0, N1 � g1N0, depends strongly
on the precise values of N0 and M0. We thus find that the
dc conductivity at low T is largest close to commensurate
points with,

s���kF � GM0��2N0���� � �Dn�T ��2 exp�byG��2N0�� ,
(18)

but s � T2N2
0Kr2�N0mod2�2Ks13 if the density is exactly

commensurate with jDn�T �j , e2bGy��4N0�.
To estimate the conductivity at a typical “incommen-

surate” point or at commensurate points at temperatures
not too low, we have to balance algebraic and exponen-
tial suppression in (15) by minimizing 2byG��2N� 1

�g1N�2K log�T � in a saddle-point approximation to the
sum over all umklapp processes in M̂. Up to logarithmic
corrections, we obtain N3

max � byG��g1�2 and therefore,
for a “typical” incommensurate filling,

stypical � exp�c�byG�2�3� , (19)

where c is a number depending logarithmically on T . At
present we cannot rule out that various logarithmic correc-
tions sum up to modify the power law in the exponent. We
argue, however, that, due to the exponential increase (18)
of s at commensurate fillings with exponents proportional
to 1�N0, the conductivity at small T at any incommen-
surate point is smaller than any exponential (but is larger
than any power since any single process is exponentially
suppressed). In Fig. 2 we show schematically the con-
ductivity as a function of filling becoming more and more
“fractal-like ” for lower T .

Can the effects we predict be seen experimentally? The
complicated structures as a function of filling shown in
Fig. 2 are not observable in practice as they occur only
at exponentially large conductivities. The T dependence
of the conductivity at intermediate temperatures, however,
should be accessible, e.g., by comparing the conductivities
of clean wires of different length. Perhaps more impor-
tantly, it is straightforward to apply our method to a large
1/4 1/31/5 2/51/6 1/10 n
0

50

100

lo
g[

σ]

0.001 0.01
T

10

20

lo
g[

σ]

n=1/3

n=1/3+0.01

FIG. 2. Schematic plot of log�s� as a function of the
filling n � 2kF�G for various temperatures (yGb �
30, 100, 300, 500, 800) based on an asymptotic [Eq.(15)] evalu-
ation of (10). Near commensurate fillings nc, the conductivity
is strongly enhanced at low temperatures but drops at n � nc.
The inset displays the T dependence of s for n � 1�3 and a
filling very close to 1�3 (dashed line).

number of other relevant situation, e.g., close to a Mott
transition or in the presence of 3D phonons, as we will
discuss in a forthcoming paper.
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