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Localization and Delocalization in Dirty Superconducting Wires
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We present Fokker-Planck equations that describe transport of heat and spin in dirty unconventional
superconducting quantum wires. Four symmetry classes are distinguished, depending on the presence
or absence of time-reversal and spin-rotation invariance. In the absence of spin-rotation symmetry, heat
transport is anomalous in that the mean conductance decays like 1�

p
L instead of exponentially fast

for large enough length L of the wire. The Fokker-Planck equations in the presence of time-reversal
symmetry are solved exactly and the mean conductance for quasiparticle transport is calculated for the
crossover from the diffusive to the localized regime.

PACS numbers: 72.15.Rn, 73.20.Fz, 73.23.–b, 74.25.Fy
The discovery of the d-wave nature of the order
parameter in high Tc materials has renewed interest in
unconventional superconductors with low energy quasi-
particles near the Fermi energy ´F . An important question
is how disorder affects the quasiparticle dynamics and the
corresponding low-temperature properties of the super-
conductor. In Ref. [1] it is predicted that, on energy scales
j´ 2 ´F j less than the inverse mean free time and on
length scales beyond the mean free path, weak impurity
scattering leads to a finite density of states (DOS) and to
a diffusive dynamics of quasiparticles. In normal metals,
it has been known for a long time that quantum inter-
ference imposes corrections to this picture, in the form
of weak localization, and eventually, for dimensions
# 2, exponential (Anderson) localization. The analogous
question for low-energy quasiparticles in unconventional
superconductors has been considered only recently [2–7].

The crucial distinction between quasiparticles in a su-
perconductor and in a normal metal, is that the former are
described by a Hamiltonian of Bogoliubov–de Gennes
(BdG) type. Such a Hamiltonian has an additional
particle-hole grading, accompanied by a discrete particle-
hole symmetry, which is absent in the Hamiltonian for
(electronlike) quasiparticles in a normal metal. Sym-
metry plays a crucial role in the problem of Anderson
localization. A classification of the symmetry classes for
BdG Hamiltonians, depending on the presence or absence
of time-reversal (TR) and spin-rotation (SR) symmetry,
has been given by Altland and Zirnbauer [8]. The four
possibilities are denoted C, CI, D, and DIII; see Table I.
Reference [8] addressed the “zero-dimensional” (0D)
case of chaotic quantum dots with superconducting leads.
The higher dimensional realizations of the BdG sym-
metry classes, relevant for the question of localization,
were studied in Refs. [2–7], mainly by field-theoretical
methods involving construction and analysis of nonlinear
sigma models with appropriate symmetries.
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In this Letter, we study localization in the BdG sym-
metry classes for the geometry of a quantum wire, i.e., in
quasi-one-dimension (quasi-1D). For this purpose, we use
the Fokker-Planck (FP) approach [9,10], which is comple-
mentary to the nonlinear sigma model of Refs. [2–4,6,7].
Using the classification scheme of Ref. [8], we obtain four
FP equations that control quasiparticle transport at the
Fermi level in a dirty superconducting wire. Our findings
are remarkable: While for classes C and CI the mean and
typical values of the quasiparticle conductance g decay ex-
ponentially with the length L of the wire for large L, the
situation in classes D and DIII is quite different. There the
mean �g� decays only algebraically to zero for large L and
lng is not self-averaging, indicating a very broad distribu-
tion of the conductance and the absence of the exponential
localization of the quasiparticle states at ´F . (The absence
of exponential localization for class D has been announced
independently in Ref. [7].)

It should be stressed that the BdG Hamiltonians do not
conserve charge. Instead, the conserved densities are those
of the energy (in all four classes) and spin (when the SR
symmetry is present). Thus, the transport properties (the
conductance g) studied in this Letter refer to transport of
heat and spin.

We now proceed with a detailed statement of our results
and their derivation. The model that we consider is that
of a disordered quantum wire, with a Hamiltonian of the
BdG form. We distinguish gradings corresponding to spin
up/down, particle/hole, left /right movers. Denoting these
with Pauli matrices s, g, and t, respectively, we write our
model Hamiltonian as

H � K 1 V , K � iyF≠xs0 ≠ g0 ≠ t3 ≠ 'N ,
(1)

where s0 is the 2 3 2 unit matrix in the spin grading, etc.
The kinetic energy K describes the propagation of right
and left moving quasiparticles in N channels at the Fermi
© 2000 The American Physical Society
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TABLE I. Definition of the symmetry classes for a dirty superconducting quantum wire, with
respect to the presence of spin-rotation (SR) and time-reversal (TR) symmetry. Listed here are
the Lie group L of the transfer matrix M , the factor group G of angular degrees of freedom
of M , the multiplicities of the roots of the symmetric space L �G , and the degeneracies of the
radial coordinates xj of the transfer matrix M .

Class SR TR L G m0 ml d

C Yes No Sp�N , N� Sp�N� 3 Sp�N� 4 3 4
CI Yes Yes Sp�N , �� Sp�N� 2 2 4
D No No O�4N , 4N� O�4N� 3 O�4N� 1 0 1

DIII No Yes O�4N , �� O�4N� 2 0 2
level. The “potential” V �x� is an 8N 3 8N matrix that
accounts both for the presence of disorder and of supercon-
ducting correlations. In particle/hole (g) grading it reads

V �

µ
y D

2D� 2yT

∂
, (2)

where y (D) is a Hermitian (antisymmetric) 4N 3 4N ma-
trix, representing the impurity potential (superconducting
order parameter). The form (2) of the potential V en-
sures that the Hamiltonian H obeys particle-hole symme-
try, H � 2g1H

Tg1 [8]. In addition, H (and hence
V � may obey TR invariance H � T H �T 21, with
T � it1 ≠ s2, and/or SR invariance H � 2g2H

Tg2.
Spatial fluctuations of the order parameter D and the

potential y are taken into account by assuming that V is
a Gaussian random variable with vanishing mean, i.e. that
its probability functional P�V � is of the form

P�V � ~ exp

∑
2

g�

4c

Z L

0
dx trV 2�x�

∏
, (3)

where � is the mean free path, g is a numerical constant to
be defined below, and c � 1 (2) for class C�D (CI�DIII).
The transport properties of the Hamiltonian H describe
the transport of spin and heat by quasiparticles in a disor-
dered superconducting quantum wire.

Before we continue with the analysis of our model
(1)–(3), some remarks about its validity and relevance are
in place. One key property of the model is that, apart from
corrections at very low energies due to quasiparticle local-
ization [4] or the appearance of a critical state, the DOS of
the Hamiltonian H near the Fermi level ´F is nonzero and
finite. This is related to the fact that the statistical average
of the order parameter D is zero in our model, cf. Eq. (3).
For a dirty superconductor, such behavior is plausible if
the order parameter is unconventional, as in d-wave super-
conductors, or when it breaks TR symmetry, as is believed
to be the case for, e.g., the ruthenates [11], vortex lines
in a (conventional) superconductor [3], or a normal metal
wire with magnetic impurities that is weakly connected to
a superconducting substrate. In all these cases the disorder
leads to the existence of low-energy quasiparticle states
[1,4]. The Hamiltonian (1) then describes diffusion and
localization of these “disorder-facilitated” quasiparticles.
An altogether different scenario is that of a wire made out
of an unconventional superconductor with very weak dis-
order. If boundary conditions are suitably chosen, one or
several propagating modes can exist at ´F , whose localiza-
tion properties are described by Eq. (1). In any case, one
should view H as an effective or coarse grained Ham-
iltonian, whose validity is restricted to length scales be-
yond the microscopic mean free path �. It is universal in
the sense that its form is determined solely by the sym-
metry, and the distribution (3) provides for the existence
of the diffusive regime with a finite DOS at the proper
energy scale. (Note that the restrictions to the validity of
our model are not different from those of related field theo-
retic descriptions appearing in the literature [3,4,6,7].)

We describe transport properties of the model (1)–(3)
through its 8N 3 8N transfer matrix M that encodes
the x dependence of an 8N-component quasiparticle wave
function c satisfying the Schrödinger equation H c �
´c at ´ � 0, c�x 1 L� � M �x 1 L, x�c�x�. Formally,
M is related to the Hamiltonian (1) as

M �x 1 L; x� � Ty exp

∑
i
Z x1L

x
dy t3 V �y�

∏
, (4)

where Ty denotes the path ordering operator for the
y integration along the wire. From Eq. (4) one finds
that flux conservation (i.e., Hermiticity of H ) and
particle-hole symmetry imply that Myt3M � t3 and
g1Mg1 � M�, respectively. Further, TR invariance
requires T MT 21 � M�, while SR invariance is
obeyed if g2Mg2 � M�. The transfer matrix M obeys
the multiplicative rule M�z, x� � M �z, y�M �y, x� for
x , y , z and hence is an element of a certain Lie group
L . The appropriate Lie groups for the four symmetry
classes are listed in Table I. We note that the actual
transfer matrix group is an 8N-dimensional representation
of the Lie group L , where L also allows a lower
dimensional (irreducible) representation for the classes
C, CI, and DIII [12]. Elements of L are conveniently
parametrized in terms of their polar decomposition, which,
in an irreducible representation, takes the formµ

V1 0
0 V2

∂ µ
coshX sinhX
sinhX coshX

∂ µ
V3 0
0 V4

∂
�C, D� ,

V1

µ
coshX i sinhX

2i sinhX coshX

∂
V2 �CI, DIII� .

Here Vi [ O�4N� [Sp�N�] for classes D�DIII [C�CI], for
all i � 1, 2, 3, 4, and X is a diagonal matrix with positive
entries xj . (By Kramers’ degeneracy, the elements of X
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occur in pairs in class C.) The xj serve as radial coordi-
nates on the Lie Group L . One verifies that the eigen-
values of the true 8N 3 8N transfer matrix MMy occur
in d-fold degenerate inverse pairs exp�62xj�, where the
degeneracy d is listed in Table I. Hence the number of
independent xj’s is 4N�d. Finally, we note that the xj are
related to the conductance g through [10]

g � d
4N�dX
j�1

cosh22xj . (5)

Our aim is to find the probability distribution of the xj

for a transfer matrix corresponding to the model (1)–(3).
Increasing the length L of the wire by a small incre-
ment dL amounts to multiplication of its transfer ma-
trix M�L� � M �x 1 L, x� by a transfer matrix M0 �
M �x 1 L 1 dL,x 1 L�. Since M0 is close to the unit
matrix, random, and statistically independent from M �L�,
we find that as a function of L, M �L� performs a ran-
dom trajectory on its Lie group L . Actually, we do not
need to know the full trajectory on L if we are only in-
terested in the conductance g. It is sufficient to know
the trajectory of the radial coordinates xj of M �L� af-
ter dividing out a maximal compact subgroup G of L
corresponding to the angular degrees freedom of M that
leave the product MMy invariant, or, in other words, to
know the trajectory of the xj in the symmetric space L �G
[13]. The subgroups G are listed in Table I. Starting from
the microscopic model (1)–(3), one can show that the tra-
jectory obeyed by the xj is a Brownian motion on the coset
space L �G described by the joint probability distribution
P�x1, . . . , x4N�d ; L�. The L evolution of P is described by
a FP equation, which follows either from a direct calcu-
lation starting from Eq. (1), or from the general theory of
symmetric spaces [13]. In both cases we find

≠P
≠L

�
1

2g�

4N�dX
j�1

≠

≠xj

∑
J

µ
≠

≠xj
J21P

∂∏
,

J �
4N�dY
j�1

jsinh2xjj
ml

4N�dY
k.j

Y
6

jsinh�xj 6 xk�jmo ,

(6)

where the numbers ml and mo are the long and ordi-
nary root multiplicities in the symmetric spaces L �G , see
Table I, and g � �4Nmo�d� 1 1 2 mo 1 ml . The FP
equation (6) is supplemented with the boundary condition
≠P�≠xj � �P�J�≠J�≠xj at xj � 0. The initial condition
M � 1 for L � 0 corresponds to P�x1, . . . , x4N�d ; 0� �Q

j d�xj�.
The FP equation (6) is the fundamental equation that

governs quasiparticle transport and localization in quantum
wires of the symmetry classes C, CI, D, and DIII.

In the localized regime L ¿ N�, typically all xj and
their spacings are much bigger than unity, and the con-
ductance is governed by the smallest coordinate x1. That
coordinate has a Gaussian distribution, with mean mlL�g�
and variance L�g�. For classes C and CI this implies that
g is exponentially small, with
1066
�lng� � 2
2mlL
g�

, var lng �
4L
g�

, (7)

with ml � 2 for class CI and ml � 3 for class C. Ex-
ponential localization for class C in quasi-1D was previ-
ously obtained by Bundschuh et al. [3], using the nonlinear
sigma model. For class D and DIII, however, ml � 0, so
that there is no exponential localization. Instead, g has a
very broad distribution (broader than log-normal), with an
algebraic decay of the mean and the variance and an L1�2

dependence of lng,

�g� � d

s
2g�

pL
, varg �

2d
3

�g� ,

�lng� � 24

s
L

2pg�
, var lng �

4�p 2 2�L
pg�

.

(8)

Hence in classes D and DIII, quasiparticle states are not
localized at the Fermi level. Since they are neither truly
extended (typically g ø 1 in class D and DIII), we la-
bel them critical, following terminology from the case of
quantum wires with off-diagonal disorder, where similar
behavior is found at the center of the band [14,15].

The effect of disorder is much less pronounced in the
diffusive regime � ø L ø N�. Here, the conductance
has only small fluctuations around its mean. Following the
method of moments [10], we find �g� from the FP equation
by construction of evolution equations for the moments of
ga � d

P
j cosh22axj , a � 1, 2, . . . ,

g�

a
≠�ga�
≠L

�
mo

d

a21X
n�1

�ga2ngn� 2
mo

d

aX
n�1

�ga2n11gn�

1 �amo 2 2a 2 1 1 ml� �ga11�
1 �2a 2 amo 1 mo 2 2ml� �ga� . (9)

In the diffusive regime one may replace the average of a
product by the product of the averages, and hence one finds
for � ø L ø N�

�g� �
4N�

L 1 �
1

d�mo 2 2ml�
3mo

1 O ���L, L�N�� .

(10)

The first term in Eq. (10) is the Drude conductance, while
the second term is the first quantum interference correc-
tion to the average conductance. For classes C, CI, D, and
DIII it takes the values 22�3, 24�3, 1�3, and 2�3, re-
spectively. The weak localization correction for class C
was obtained earlier in Ref. [3]. For the classes D and
DIII, the correction is positive, i.e., quantum interference
enhances the conductance relative to the classical Drude-
like leading behavior (see also Ref. [3]). This is similar to
the phenomenon of antilocalization in the standard sym-
plectic symmetry class, though, as pointed out by Boc-
quet et al. [7], here it is a precursor of the breakdown of
exponential localization, while in the standard symplec-
tic class localization takes over in higher order quantum
corrections.
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In the presence of TR symmetry, Eq. (6) is soluble.
This is in contrast to the case of the FP equations for the
standard and chiral symmetry classes, where only the case
of broken TR symmetry was exactly solvable [10,15].
The first step [10] is a map of Eq. (6) onto a Schrödinger
equation in imaginary time for the wave function
C��xj	; s� � exp�2 1

2 lnJ��xj	��P��xj	; s� for 4N�d fer-
mions in one dimension with coordinates on the half-
line x . 0. They interact through a two-body potential
proportional to mo 2 2 in the presence of a one-body
potential proportional to �ml 2 2�ml . Hence, for classes
DIII and CI these fermions are free and they differ only
by the boundary condition obeyed by their wave functions
C at the origin. We thus find the solutions

P ~
Y

j

�xj sinh2xj�ml�2e2gx2
j ��2L

3
Y
j,k

�x2
k 2 x2

j � �sinh2xk 2 sinh2xj� . (11)

Using the method of biorthogonal functions [16] it is then
possible to calculate the average conductance �g� for all N
and L. Here we report the result for the limit of large N ,
leaving the results for finite N for a future publication,

�g� �
1
s

2
4
3

1 4
X̀
n�1

e2p2n2�4s

µ
1
s

1
2

p2n2

!
CI,

�g� �
1
s

1
2
3

2 4
X̀
n�1

e2p2n2�2s 1
p2n2 DIII ,

(12)

where s � L��4N��. Note the agreement with Eq. (10)
in the diffusive regime s ø 1. In the localized regime
s ¿ 1, Eq. (12) may be resummed, and the asymptotic
result (8) is reproduced for class DIII, while for class CI
one finds �g� � 8�ps�21�2 exp�24s�. Quite remarkably,
the exact results (12) for �g� in classes CI and DIII are re-
lated to the average conductance �g�ch in the chiral unitary
ensemble for odd channel number [15] as �g�s�2��CI 1

2�g�s��DIII � 4�g�s��ch.
The absence of localization in wires of classes D and

DIII may have important implications for higher dimen-
sions, provided our results can be extended beyond 1D, and
provided they are not restricted to the regime of weak dis-
order. With respect to the latter restriction, we can point to
the close formal similarity of the delocalization for the FP
equations of class D�DIII and the corresponding FP equa-
tion for the chiral symmetry classes with odd N , where it
is understood that the absence of localization holds both
for weak and strong disorder [14,17]. Thus arguing that
quasiparticle states at the Fermi level remain delocalized
for arbitrary disorder strength and dimensionality in the D
classes, our result suggests a possible resolution of a con-
troversy in the literature surrounding 2D disordered super-
conductors of class D [6,7]. While all Refs. [6,7] assumed
existence of two localized phases, distinguished by the
quantized value of the Hall conductivity sxy , and a metallic
phase, the proposed global phase diagrams and transitions
between the phases differ considerably. We suggest that
the solution might simply lie in the absence of localized
phases for classes D and DIII in any dimension $1.

In conclusion, we considered quasiparticle transport and
localization in disordered quasi-1D superconducting wires
at the Fermi level for the four Bogoliubov–de Gennes sym-
metry classes C, CI, D, and DIII. We obtained and solved
the Fokker-Planck equations for the probability of the ra-
dial coordinates of the transfer matrix. While quasiparticle
states are localized in classes C�CI, localization is absent
if spin-rotation symmetry is broken (classes D�DIII).
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