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Persistence of Well-Defined Collective Excitations in a Molten Transition Metal
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Well-defined microscopic collective excitations are found in liquid Ni at 1763 K by means of inelastic
neutron scattering. Such excitations are supported by the liquid despite an anharmonic character of its
thermodynamic functions. Consideration of the detailed shape of the interionic pair potential provides a
way to understand why atomic motions at microscopic scales behave in a way much closer to the alkali
metals than to the liquefied rare gases.

PACS numbers: 61.25.Mv, 61.12.–q, 62.30.+d
Our present picture of collective atomic motions in
classical monatomic liquids portrays them in terms of
a few discrete eigenmodes of a fluid continuum. This
mesoscopic description, valid within the thermodynamic
limit, encompasses the relevant dynamics within a wave-
vector-dependent frequency spectrum S�Q, v� known as
the Rayleigh-Brillouin triplet. It reproduces the shape
of the experimental spectrum at scales larger than few
hundreds of Å [1], where the microscopic details are of
scant importance. Beyond such limit and up to length
scales comparable to 2p�Qp where the static structure
factor S�Q� shows its maximum, the excitation spectrum
measurable by radiation scattering experiments may show
well-defined peaks at finite frequencies which cannot
be realistically identified with hydrodynamic sound,
but should rather be viewed as microscopic motions
paralleling phonon excitations in a crystal. These motions
were understood [2,3] in terms of a simple model which
predicts the occurrence of independent density oscillations
with frequency vQ �

Q2kBT
MS�Q� [4], with M being the particle

mass, having a lifetime long enough to appear as well-
resolved peaks in S�Q, v�. Such a view, which is borne
out by data on molten alkali and some heavier sp metals
[3,5], has a thermodynamic consequence which implies
that the ratio of specific heats at melting g � Cp�Cy � 1
and that Cp�NkB � 3R, that is, the liquid is thought
of as a collection of harmonic, Einstein oscillators. In
contrast, liquefied rare gases support well-defined excita-
tions at wave vectors not far beyond those signaling the
crossover from hydrodynamics to the microscopic regime
[1]. Such disparate behavior leads to the consideration
of the “harmonic-liquid” character as a prerequisite for
a liquid to support these kind of excitations. This was
further quantified in terms of a criterion based on the
curvature about the main minimum of the pair potential
[6]. Other liquid metals and semimetals explored so far
[7] show, however, that the condition of having a marked
harmonic character in the thermodynamic functions is
not sufficiently strong to enable the liquid to propagate
an excitation of short wavelength. Furthermore, some
0031-9007�00�85(1)�106(4)$15.00
fairly anharmonic liquids such as para-H2 [7] have been
shown to sustain the modes referred to, due to large
quantum effects arising from their low mass and the low
temperatures close to their triple point.

Liquid Ni constitutes an optimum benchmark to clarify
the extent of validity of the picture drawn above. At melt-
ing �Tm � 1728.15 K� its specific heat Cp�NkB � 4.6R
is well above the harmonic value (3R) and g � 1.88 is
halfway between that of 2.2 of Ar and that of 1.2 of Rb.
The differences in thermal and electronic properties of
these two metals are thought to arise from the presence
of 3d electrons in Ni. These, however, show a scant ef-
fect on the microscopic liquid structure which looks rather
similar to those of the liquid alkali metals once the dif-
ferent sizes of the electron cores are accounted for. The
transport and kinetic properties are, however, far more sen-
sitive to electronic structure details. In particular, the shear
viscosity of liquid Ni at melting reaches 5.64 mPa s, and
the apparent activation energy for viscous flow amounts to
�29 J mol21 while the alkali metals (from Na to Cs) have
viscosities of about 0.50 0.70 mPa s and activation ener-
gies �5 J mol21 [8]. If compared with the well-studied
case of liquid Pb, one again obtains figures of 2.6 mPa s
and �8 J mol21, respectively. The values just quoted in-
dicate that such differences are not due to the disparate
atomic masses and melting temperatures of the liquids be-
ing compared but should rather be attributed to peculiari-
ties of the interionic potentials. On such a basis, one would
expect that only overdamped modes would be supported by
the liquid close to melting since their lifetimes would be
severely shortened by viscous damping. However, as illus-
trated here, the presence of relatively well-defined excita-
tions in liquid Ni reveals that the shapes of the interionic
potentials need to be considered in greater detail than that
of [6] if one wishes to relate them with microscopic dy-
namic phenomena.

Our interest in studying this liquid was fostered by
reports on the highly anomalous behavior of alloys of
geophysical interest (Fe-Ni-S) [9] as well as by the
availability of simulation results [10] employing realistic
© 2000 The American Physical Society
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potentials and the existence of indirect experimental indi-
cations of the presence within the liquid of well-defined
excitations [11]. As regards the simulations, well-resolved
peaks are seen in S�Q, v� persisting up to Q � 1.8 Å21,
well above Qp�2 � 1.54 Å21, indicative of an excitation
propagating with an adiabatic speed cs � 4280 m s21.

The measurements were carried out using the IN1 hot-
neutron spectrometer located at the Institut Laue Langevin,
Grenoble. The sample holder was built from 15 alumina
tubes of 78 mm length and 2 mm i.d. filled with Ni wire
which were held by two disk flanges of 4 cm diameter on
both ends and placed normal to the neutron beam on a
circular arrangement of 3 cm diameter. The sample thick-
ness was chosen as a compromise between multiple scat-
tering and inelastic signal-to-noise ratio. The former was
estimated to be somewhat below 20% and its main con-
tribution is concentrated at energies below 15 meV. The
temperature was set to 1763 K. A representative sample
of spectra actually measured using a final wave vector of
8.2 Å21 is shown in Fig. 1. The achieved resolution at
the elastic peak was �4.5 meV. The usable range of mo-
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FIG. 1. Spectra as measured on IN1. The graph shows spectra
measured at momentum transfers given in the panels. Sym-
bols represent experimental data and lines represent the fitted
model functions. Thick solid lines depict the inelastic intensity
(DHO), dashed and dashed-dotted lines show the quasielastic
components of the coherent and incoherent origins, respectively,
and the dotted line in the large-Q spectra shows the intensity
arising from the alumina container.
mentum transfers was bound within 0.8 # Q # 3.5 Å21.
The measured spectra for Q values beyond 1.5 Å21 show
a contribution arising from the high-energy phonons of
the alumina container. Fortunately, this was easy to iden-
tify since it gives rise to a very strong peak at about
52 meV [12], the intensity of which is modulated by the
alumina powder diffraction pattern and was easily sepa-
rated from the response of the liquid metal which appears
at considerably lower frequencies. From the spectra dis-
played in Fig. 1 it is seen that clear inelastic shoulders
appear at wave vectors as large as 1.7 Å21. Their ampli-
tudes with respect to the whole signal vary among some
17% for Q � 0.8 Å21, 30% for Q � 1.5 Å21, and 38%
for Q � 3.5 Å21, which are close to the first minimum
in S�Q�.

To analyze the spectra in more detail a model func-
tion Imod�Q, v� � AI�Q, v� ≠ R�Q, v� is used, where A
stands for a global scaling constant and R�Q, v� is the in-
strumental resolution. Since the ratio of incoherent and
coherent neutron cross sections of natural abundance Ni
is sinc�scoh � 0.3, both contributions were necessary to
account for the quasielastic intensity. The final ingredients
of the model function were, therefore,

I�Q, v� �
scoh

st
�Ic.qel�Q, v� 1 Iinel�Q, v��

1
sinc

st
Ii.qel�Q, v� .

The quasielastic contributions I�c,i�qel�Q, v� were repre-
sented by two Lorentzians while a damped harmonic oscil-
lator (DHO) was used for Iinel�Q, v� [13]. An additional
DHO was needed to account for the alumina phonons as
shown in some spectra in Fig. 1. The parameters describ-
ing the collective dynamics are thus the excitation frequen-
cies VQ , damping terms GQ , and their amplitudes. Within
those describing the quasielastic spectrum, only the coher-
ent quasielastic linewidth Dv

coh
qel and intensity could safely

be isolated from the measured intensities, since the inco-
herent quasielastic component was significantly narrower
than the instrument resolution. The measured values for
Dv

coh
qel were within �3 14 meV for the explored range of

wave vectors.
The Q dependence of the parameters describing the

inelastic signal is shown in Fig. 2. Linear hydrodynamic
sound is expected to follow a law [6] VQ � cT Q with
cT � cs�pg � 19.82 meV Å, that is, the isothermal
sound velocity which is given in terms of the adiabatic
value and the ratio of specific heats. The data shown in
Fig. 2a suggest that such a regime is approached only
at the lowest accessible momentum transfer �0.8 Å21�.
The lowest data points for GQ shown in Fig. 2b are well
approximated by a quadratic function GQ � DQ2 with
a damping coefficient D � 15 meV Å2. The highest
frequencies shown in Fig. 2a are �15% smaller than the
highest phonon frequencies of the crystalline solid [14].
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FIG. 2. Spectral parameters characterizing the collective
excitation. (a) Excitation frequencies. The straight line
represents hydrodynamic dispersion Vhyd � cT Q with cT �
19.82 meV Å. Experimental data are depicted by filled sym-
bols. Open symbols stand for the simulation data of [10]. The
line going through the data points is drawn as a guide to the
eye. (b) Damping coefficient as given by the full width at
half maximum of the inelastic peak. The line shows a fit to a
hydrodynamic damping Ghyd � DhydQ2 with Dhyd � 15 meV.

Such a relatively small reduction in frequencies suggests
that what is being sampled in the melt can be thought of
as remnants of crystal phonons. To see this, we make an
estimate within the hydrodynamic realm of the amount of
softening of the elastic constants upon melting. To pro-
ceed, we calculate a polycrystalline average of the crystal
elasticity constant using published values of the constants
including their temperature dependences [15]. If one then
calculates the value for the melt from macroscopic sound
velocity and density data [8], one arrives at a figure for
the ratio of the liquid and crystal constants upon melting
of 0.68, a respectable figure which shows that the strong
binding forces of the crystal still are felt within the melt.
The “dispersion curve” shown in Fig. 2a can thus be
understood by reference to the orientationally averaged
frequencies of the polycrystal.

From the ratios VQ�GQ it is inferred that the re-
gion of propagating density oscillations extends up to
�1 Å21. The lifetimes estimated as G

21
Q for the lowest

accessible wave vector Q � 0.8 Å21 give figures of
�0.44 ps which translates into mean free paths (MFP)
of about 13 Å. In consequence, one expects that the
108
excitation MFP’s will reach distances well beyond those
characteristic of next-nearest neighbors at relatively large
wave vectors (for Q � 0.5 Å21 a lifetime of 1 ps and a
MFP of 30 Å are expected.) A comparison of data for
Q � 0.8 Å21 with results from Ref. [10] shows that the
simulation data overestimate the excitation frequencies by
some 35% while predicting a linewidth which is in good
agreement with the present result.

In a monatomic liquid the excitation lifetimes are short-
ened by viscous drag forces and heat flow effects which are
additive up to first order and their relative weights can be
estimated within the hydrodynamic limit [16] from values
of thermodynamic quantities [17]. Here, viscous damping
amounts to 6.3 3 101 Å2 ps21 while that related to heat
conduction reaches 6.8 3 102 Å2 ps21. The latter, which
is much larger than those of the alkali metals, arises from
the large thermal conductivity as well as from �g 2 1�
which is here 4 times larger than that of liquid Rb. The
values just quoted, if extrapolated to Q � 1 Å21, would
lead to damping coefficients much larger than the excita-
tion frequencies, in stark contrast with experiment. Such
an apparent paradox was solved some time ago by means
of the introduction of a Q-dependent microscopic viscos-
ity h�Q� which approaches the hydrodynamic value as
Q ! 0 but strongly decreases as Q increases. In our case,
estimates of the linewidths for the Q values under con-
sideration may be derived from h�Q� � G�Q�t�Q� with
G�Q� given by Eqs. 8.81 of Ref. [3]. By taking values
for the Einstein frequency vE � 4.2 3 1013 s21 and the
relaxation time t�Q� from the computer simulation work
[10], one obtains a linewidth for Q � 1 Å21 of �17 meV,
not too far from the observed value. With regards to the
heat-conduction term, fairly conclusive evidence from the
analysis of computer simulations and experiments on dense
rare-gas fluids [1] show that an even stronger Q depen-
dence is to be expected for this term. In fact the very
ratio of specific heats is believed to be Q dependent, reach-
ing values close to unity at wave vectors somewhat below
Qp [18]. This therefore leaves the viscous term as the
dominant contributor to damping. The latter can in turn be
related to microscopic details by recourse to semiempirical
treatments such as [19],

hs �
8p

9
vLMr2

0

Z a

0
r4g�r� dr , (1)

with a denoting the first minimum of the g�r� radial dis-
tribution. Equation (1) thus relates the damping to the
Lindemann frequency vL [19], evaluated from thermo-
dynamic properties at melting, a mass density term, and
a contribution dependent upon the microscopic structure.
The latter was evaluated from published data for the ra-
dial distributions [20] and yields 80.20 for Ni versus 539.7
for Na or 1561 for K. Such disparate values are partially
compensated for by the mass density which makes the last
two factors in Eq. (1) to be of the same order as that of Ni
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(4 times larger than Na and �3 times that of K). Finally,
the value of vL, which amounts to 15.5, 7.8, and 4.4 meV,
respectively, serves to give a due account of the large dif-
ferences in viscosity of liquid Ni and the molten alkali
metals. In this respect it is worth remarking that while a
large vL will increase the damping it will also increase the
frequency of the excitation, and therefore the ratio hs�vL

is the quantity that matters concerning the character of the
excitation (i.e., propagating or overdamped).

To explore whether the observed density oscillations re-
sult from specific details of the pair potential, we have
considered that of Ni, alongside those of the molten al-
kali metals, as well as that of Ar in the same spirit as
described in Ref. [6]. A criterion to quantify the extent
that a liquid deviates from idealized behavior is given by
gG � 2�r0�6� ���y000�r��y00�r����r0 where y�r� is the pair po-
tential, the primes stand for its derivatives, and r0 is the
location of its minimum. The quantity gG is thus inter-
preted as a Grüneisen parameter for next-neighbor interac-
tions which vanishes for quadratic potentials. To proceed,
use was made of the set of potential functions given in
[20] (Na-Cs and Ni). The shapes of y�r� about the main
minimum were approximated by an anharmonic potential,
including terms up to fifth order for the alkalis and to sixth
order for Ni. The effective gG were then evaluated from
the fitted functions, yielding figures for the heavier alka-
lis (Na-Cs) within 1.79–1.45 while that for Ni is �2.06.
A 12-6 Lennard-Jones, known to accurately describe liq-
uid Ar, has gG � 3.5 which is significantly larger than the
rest. The figures just quoted thus show that it is the cur-
vature of the main minimum of the potential that drives
the dynamics of liquid Ni in a way much closer to that
of the alkali metals than to liquid Ar. Other details, such
as the softness of the repulsive cores or the radial extent
covered by the ionic pair potential, seem to be of lesser
importance.

In summary, the presence of well-defined excitations in
a liquid with fairly anharmonic features in its thermody-
namic functions shows that, contrary to current assump-
tions, the presence of d electrons or the absence of well
defined Friedel oscillations in the pair potential does not
rule out the ability of a liquid metal to sustain well-defined
collective excitations. Moreover, these seem to be more
dependent upon details of the microscopic interactions up
to distances corresponding to nearest neighbors as quan-
tified by gG than on the value of the thermodynamic g.
A quantitative understanding of the microscopic dynam-
ics of transition metal liquids is needed to provide a way
out of recent controversies concerning the viscosity of the
earth’s mantle for which estimates differing by many or-
ders of magnitude are under discussion [9]. The mystery
is all the more complete as studies on the elastic proper-
ties of one of the candidates to represent its composition (a
Fe-Ni-S alloy) report large anomalies in their temperature
and frequency dependences [9]. Studies of such alloys are
now on the agenda, aiming to disentangle the microscopic
mechanisms leading to these puzzling behaviors.
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