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Pinning of Quantized Vortices in Helium Drops by Dopant Atoms and Molecules
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Using a density functional method, we investigate the properties of liquid 4He droplets doped with
atoms (Ne and Xe) and molecules (SF6 and hydrogen cyanide). We consider the case of droplets having
a quantized vortex pinned to the dopant. A liquid-drop formula is proposed that accurately describes
the total energy of the complex and allows one to extrapolate the density functional results to large N .
For a given impurity, we find that the formation of a dopant 1 vortex 1 4HeN complex is energetically
favored below a critical size Ncr . Our results support the possibility to observe quantized vortices in
helium droplets by means of spectroscopic techniques.

PACS numbers: 67.40.Vs, 33.20.Sn, 36.40.–c, 67.40.Yv
Since the first observation of the n3 vibrational band
of SF6 dissolved in 4He droplets [1], the infrared spec-
troscopy of molecules inside or attached to helium has at-
tracted wide interest (see, for instance, Refs. [2–4] and
references therein). A major motivation for these efforts
is that cold helium droplets offer the possibility of re-
solving rotational spectra of rather complex molecules and
may constitute “the ultimate spectroscopic matrix” [5] to
create and study novel species. This unique feature of he-
lium droplets originates from their quantum nature: not
only are they fluid at zero temperature due to the large
zero point motion, but they also exhibit a crucial superfluid
behavior. The superfluid character of 4He droplets is inter-
esting also from a fundamental viewpoint. In fact, the ob-
servation of superfluidity in finite-sized quantum systems
has to do with important concepts, such as order parameter,
Bose-Einstein condensation, and phase coherence, which
were originally introduced for uniform systems and which
are now widely used in different contexts.

In the case of liquid helium, Grebenev et al. [6] recently
showed that only a rather small amount of 4He atoms is
needed to develop a superfluid droplet, confirming theo-
retical predictions [7]. In that experiment, the evidence
for superfluidity is the appearance of a sharp rotational
spectrum of an oxygen carbon sulfide (OCS) molecule in
3He-4He mixed drops, when the number of 4He atoms sur-
rounding the dopant [8] is larger than about 60. In the
same spirit, experiments have been made to observe criti-
cal velocities [9] (i.e., the occurrence of a Landau criterion
for superfluidity) and a reduction of the moment of inertia
(see [10] and references therein). In contradistinction, de-
tecting quantized vortices in He droplets still remains an
open question. It is worth stressing that all these investiga-
tions have many analogies with current activity on Bose-
Einstein condensation in trapped gases, where new results
are now available about critical velocities [11], moments
of inertia [12,13], and vortices [14].
0031-9007�00�85(5)�1028(4)$15.00
In this Letter, we address the problem of quantized vor-
tices in liquid 4He droplets. One first observes that a vortex
line in a pure droplet is expected to be difficult to produce
and stabilize, since it implies a significant increase of en-
ergy compared to a vortex-free droplet. To circumvent this
limitation, we explore the possibility of pinning the vortex
line to a dopant atom or molecule. If the dopant is deeply
bound inside the droplet, it might stabilize the vortex for a
time long enough to permit its detection, which is an ex-
perimental challenge. The dopant can also be used as a
probe of vorticity, as both the density distortion near the
pinning points and the symmetry breaking arising from
the existence of a vortex line will change the effective mo-
ments of inertia of the molecule, which are measurable
with spectroscopic techniques [4,10]. These changes are
expected to be especially pronounced for linear molecules
pinned along the vortex axis, whose rotation around an axis
perpendicular to it will be either partially or completely im-
peded depending on the strength of the pinning forces.

Our purpose is to determine the energy and density
profile of an impurity 1 vortex 1 4HeN complex for
droplets up to N � 1000, using a finite-range density
functional. We then subtract from its energy that of the
same droplet without vortex and/or impurity and show that
the difference fits very well a liquid-drop formula, which
allows one to safely extrapolate to larger droplets. We use
the Orsay-Paris (OP) functional [15], based on an effective
nonlocal interaction with a few parameters fixed to repro-
duce known properties of bulk liquid He. This functional
has been shown to accurately reproduce the static proper-
ties of pure and doped He clusters [16] and has also been
used to describe a quantized vortex line in bulk liquid
helium [17]. In the latter case, the vortex is included
with the Feynman-Onsager ansatz, i.e., by adding an
extra centrifugal energy associated with the velocity field,
which is singular on the vortex axis, thus forcing the den-
sity to vanish. At zero temperature this approximation is a
© 2000 The American Physical Society
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reasonable starting point, since it enormously reduces the
computational effort (for a recent discussion about its
accuracy, see [18]). For doped droplets, one has also to
include the helium-molecule interaction, which acts as an
external potential in which the helium density adjusts to
minimize the energy. Potentials for rare gas impurities
have been taken from [19], that of the spherically averaged
SF6 from [20], and that of hydrogen cyanide (HCN) from
[21]. The total energy is thus written as

E �
Z

dr
µ
H �r�r�� 1

h̄2

2mr2
�

r�r� 1 VI �r�r�r�
∂

,

(1)

where r�r� is the He particle density, H is the OP func-
tional, VI is the helium-impurity potential, and r� in the
centrifugal term is the distance from the vortex axis. The
energy minimization is performed in axial symmetry by
mapping the density on a grid of points, putting the vor-
tex line along the z axis and the dopant in the center, at
r � 0. The numerical code used to evaluate the density
profile and energy is the one written for the calculations
in [10].

We first consider pure droplets with and without vortex.
In Fig. 1 we show density profiles, at z � 0, obtained for
different N . For large droplets, the shape approaches that
of a rectilinear vortex in the uniform liquid [17]; the core
radius is of the order of 1 2 Å and the density oscillates
as a consequence of the He-He interaction. In Fig. 2 we
plot the energy associated with the vortex flow, defined as

DEV �N� � EV �N� 2 E�N� , (2)

where EV and E are the energies of droplets with and
without vortex, respectively. The solid line represents the
results obtained with a liquid-drop formula:

DEV �N� � aN1�3 1 bN1�3 logN 1 gN21�3, (3)

with the parameters a � 2.868 K, b � 1.445 K, and
g � 0.313 K extracted from a fit to the density functional
calculations. This formula works well and the reason can
be understood by considering a hollow-core model for the
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FIG. 1. He density profiles (solid lines) in the z � 0 plane of
drops with N � 40, 100, 200, 300, 400, 500, and 1000 having a
vortex line along the z axis. The density profiles of vortex-free
droplets are also shown (dashed lines).
vortex, having core radius a, in a droplet of radius R and
constant density r0. Indeed, integrating the kinetic energy
of the vortex flow in the limit R ¿ a, one gets
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Writing R � r0N1�3 with r0 � �3��4pr0��1�3, one recov-
ers the N dependence as in Eq. (3). It is worth stressing,
however, that this model makes only the fitting formula
(3) plausible, but cannot be used to quantitatively relate
the best fit parameters a, b, and g to the model parame-
ters a and r0. In fact, Eq. (4) gives only the kinetic energy
of a hollow-core vortex in a large droplet, and not the dif-
ference between the energies of a droplet with and without
vortex. Moreover, the actual core has some structure, the
droplet density is not constant, and the core radius is not
always much larger than the droplet radius.

The next step is the inclusion of a dopant atom or mole-
cule. As an example, in Fig. 3 we show the He density
distribution for a drop of N � 500 with HCN hosted in
the vortex core. Both the axis of the linear molecule
and that of the vortex are taken along z. The density
is very inhomogeneous near the dopant, due to the com-
plexity of the HCN-He interaction. The energetics of the
system can be conveniently analyzed by introducing the
following energies:

DEX
V �N� � EX1V �N� 2 EX�N� , (5)

SX�N� � EX�N� 2 E�N� , (6)

SX1V �N� � EX1V �N� 2 E�N� , (7)

where the subscripts X and V refer to drops doped with
impurity X and/or vortex line.

The energy DEX
V is the one associated with the vortex

flow in the doped cluster. In Fig. 2 it is compared with the
vortex energy in pure droplets, DEV . The difference,

dX�N� � DEX
V 2 DEV , 0 , (8)
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FIG. 2. The vortex energy DEV �N� (dots) in pure 4HeN drops.
The line is a fit obtained using Eq. (3). Open symbols are the
vortex energies DEX

V �N� in doped droplets.
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FIG. 3. Density distribution in the xz plane for a HCN-He500

droplet hosting a vortex along the z axis. Lengths are in Å.
Contour lines are drawn between 12 equally spaced intervals of
density, where white is for density less than 7.5 3 1023 Å23,
and the darkest level corresponds to density higher than 9 3
1022 Å23.

is almost independent of N , apart from the smallest
droplets. The reason is that this difference has to do with
the “geometrical extension” of the dopant, i.e., the “hole”
made by the dopant in the vortex flow, as well as with
the distortion of the density near the dopant caused by the
pinning of the vortex core. Both effects are localized near
the dopant and thus, they are expected to give a shift in
energy which becomes N independent for large droplets.

The quantity SX�N� in Eq. (6) is the solvation energy of
the dopant in a vortex-free droplet. The results obtained
for Ne, Xe, HCN, and SF6 are shown in Fig. 4. As already
discussed in [16,22], the solvation energy becomes almost
N independent for N larger than a few hundreds. The value
at N � 1000 can be safely taken to represent the solvation
energy in the bulk, SX�`� � SX�1000�. For our analysis,
we have chosen impurities having binding energies on a
wide range.

The key quantity in the present study is the solvation
energy of the dopant 1 vortex complex given by SX1V �N�
in Eq. (7). The results are shown in Fig. 5. From the
definitions (5)–(8), one can also write

SX1V �N� � EX�N� 1 DEX
V �N� 2 E�N�

� SX�N� 1 DEV �N� 1 dX�N� . (9)

In Fig. 5 we compare SX1V with the sum SX 1 DEV ;
the difference is dX. The simple picture which emerges
from this analysis is that the solvation energy of the
dopant 1 vortex complex is just the sum of the solvation
energy of the dopant with no vortex and the extra energy
of a vortex in a pure droplet, apart from a small shift which
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FIG. 4. Solvation energy SX�N� for X � Ne, Xe, SF6, and
HCN. The lines have been drawn to guide the eye.

depends on the dopant. Deviations from this rule are sig-
nificant only for small droplets, having radius of the order
of the size of the dopant. Our results provide a quantitative
basis for this picture and typical estimates of dX. We
also notice that, by rearranging the terms in Eq. (8), this
quantity can be written as the difference between the sol-
vation energies of the dopant in a droplet with and without
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FIG. 5. Excess energies SX1V �N� (dots) for Ne, Xe, SF6, and
HCN. The triangles represent SX�N� 1 DEV �N�. Lines have
been drawn to guide the eye.
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vortex, dX � ��EX1V 2 EV � 2 �EX 2 E��, and can,
hence, be interpreted as the binding energy of the dopant
to the vortex [23].

Since the solvation energy SX is negative and almost
constant for N . 300 while the vortex energy DEV al-
ways increases, the dopant 1 vortex complex has a solva-
tion energy which changes sign at some Ncr . This means
that, for N , Ncr , the dopant 1 vortex complex is ener-
getically favored. In the case of Ne, as one can see in
Fig. 5, Ncr � 380. This number is rather small as com-
pared to the typical droplet size in current experiments,
and is a consequence of the weak binding of Ne. Dopants
with stronger binding have larger Ncr . An estimate for
HCN, Xe, and SF6 can be easily obtained by means of the
liquid-drop formula. One has to insert expression (3) in
Eq. (9) and use the large-N values of SX and dX. The SX
values turn out to be 2310, 2320, and 2622 K, and the
dX values are 25.0, 24.4, and 27.7 K for Xe, HCN, and
SF6, respectively. These numbers yield Ncr � 7600 for
Xe, �8100 for HCN, and �40 000 for SF6.

In conclusion, the analysis of the energetics of doped he-
lium droplets has allowed us to disclose a possible mecha-
nism to create and stabilize vortex lines. A dopant 1

vortex complex could be formed by picking up the im-
purity, assuming that the collision imparts sufficient an-
gular momentum. The vortex line is expected to appear
attached to the dopant, since the binding energy dX is nega-
tive. The formation of the complex is energetically favored
below a critical N which is well within the range of droplet
sizes met in current experiments if the dopant has a large
solvation energy. A metastable state could also exist for
N . Ncr , but estimating its lifetime is a more demanding
task. One should also explore the energy barrier associ-
ated with other possible decay processes. Further work is
planned in this direction.
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